Wei Ziyang, Sautet Philippe
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.
Angew Chem Int Ed Engl. 2022 Oct 24;61(43):e202210060. doi: 10.1002/anie.202210060. Epub 2022 Aug 30.
Copper (Cu) remains the most important metal catalyst for the carbon dioxide reduction reaction (CO RR) into C products. Due to limited evidence from in situ experiments, mechanistic studies are often performed in the framework of density functional theory (DFT), using functionals at the generalized gradient approximation (GGA) level, which have fundamental difficulties to correctly describe CO adsorption and surface stability. We employ the adiabatic connection fluctuation dissipation theorem within the random phase approximation (RPA), in combination with the linearized Poisson-Boltzmann equation to describe solvation effects, to investigate the mechanism of CO RR on the Cu(100) facet. Qualitatively different from the DFT-GGA results, RPA results propose the formation of *OCCHO as the potential determining step towards C products. The results suggest that it is important to use more accurate methods like RPA when modeling reactions involving multiple CO-related species like CO RR.
铜(Cu)仍然是将二氧化碳还原反应(CO₂RR)转化为含碳产物的最重要金属催化剂。由于原位实验的证据有限,机理研究通常在密度泛函理论(DFT)框架内进行,使用广义梯度近似(GGA)水平的泛函,而这些泛函在正确描述CO吸附和表面稳定性方面存在根本困难。我们采用随机相位近似(RPA)中的绝热连接涨落耗散定理,并结合线性化泊松-玻尔兹曼方程来描述溶剂化效应,以研究CO₂RR在Cu(100)晶面上的反应机理。与DFT-GGA结果在定性上不同,RPA结果表明*OCCHO的形成是生成含碳产物的潜在决定步骤。结果表明,在对涉及多个与CO相关物种的反应(如CO₂RR)进行建模时,使用像RPA这样更精确的方法很重要。