Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263.
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1592.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2202931119. doi: 10.1073/pnas.2202931119. Epub 2022 Oct 28.
The electrochemical CO reduction reaction (CORR) powered by excess zero-carbon-emission electricity to produce especially multicarbon (C) products could contribute to a carbon-neutral to carbon-negative economy. Foundational to the rational design of efficient, selective CORR electrocatalysts is mechanistic analysis of the best metal catalyst thus far identified, namely, copper (Cu), via quantum mechanical computations to complement experiments. Here, we apply embedded correlated wavefunction (ECW) theory, which regionally corrects the electron exchange-correlation error in density functional theory (DFT) approximations, to examine multiple C-C coupling steps involving adsorbed CO (*CO) and its hydrogenated derivatives on the most ubiquitous facet, Cu(111). We predict that two adsorbed hydrogenated CO species, either *COH or *CHO, are necessary precursors for C-C bond formation. The three kinetically feasible pathways involving these species yield all three possible products: *COH-CHO, *COH-*COH, and *OCH-*OCH. The most kinetically favorable path forms *COH-CHO. In contrast, standard DFT approximations arrive at qualitatively different conclusions, namely, that only *CO and *COH will prevail on the surface and their C-C coupling paths produce only *COH-*COH and *CO-*CO, with a preference for the first product. This work demonstrates the importance of applying qualitatively and quantitatively accurate quantum mechanical method to simulate electrochemistry in order ultimately to shed light on ways to enhance selectivity toward C product formation via CORR electrocatalysts.
电化学 CO 还原反应 (CORR) 利用过剩的零碳排放电力来生产多碳 (C) 产品,有助于实现碳中和到负碳经济。合理设计高效、选择性 CORR 电催化剂的基础是对迄今为止已确定的最佳金属催化剂铜 (Cu) 进行机械分析,通过量子力学计算来补充实验。在这里,我们应用嵌入式相关波函数 (ECW) 理论,该理论局部校正密度泛函理论 (DFT) 近似中的电子交换相关误差,以研究涉及最普遍的面 Cu(111) 上吸附的 CO (*CO) 和其氢化衍生物的多个 C-C 偶联步骤。我们预测,两种吸附的氢化 CO 物种,*COH 或 *CHO,是 C-C 键形成的必要前体。涉及这些物种的三种动力学可行途径产生了所有三种可能的产物:*COH-CHO、*COH-*COH 和 *OCH-*OCH。最动力学有利的途径形成 *COH-CHO。相比之下,标准 DFT 近似得出了定性不同的结论,即只有 *CO 和 *COH 将在表面占主导地位,它们的 C-C 偶联路径只产生 *COH-*COH 和 *CO-*CO,第一个产物优先。这项工作表明,应用定性和定量准确的量子力学方法来模拟电化学以最终阐明通过 CORR 电催化剂提高 C 产物形成选择性的方法的重要性。