Suppr超能文献

使用元广义梯度近似改进分子-金属表面反应网络:CO加氢反应

Improving Molecule-Metal Surface Reaction Networks Using the Meta-Generalized Gradient Approximation: CO Hydrogenation.

作者信息

Cai Yuxiang, Michiels Roel, De Luca Federica, Neyts Erik, Tu Xin, Bogaerts Annemie, Gerrits Nick

机构信息

Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk BE-2610, Belgium.

Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 May 17;128(21):8611-8620. doi: 10.1021/acs.jpcc.4c01110. eCollection 2024 May 30.

Abstract

Density functional theory is widely used to gain insights into molecule-metal surface reaction networks, which is important for a better understanding of catalysis. However, it is well-known that generalized gradient approximation (GGA) density functionals (DFs), most often used for the study of reaction networks, struggle to correctly describe both gas-phase molecules and metal surfaces. Also, GGA DFs typically underestimate reaction barriers due to an underestimation of the self-interaction energy. Screened hybrid GGA DFs have been shown to reduce this problem but are currently intractable for wide usage. In this work, we use a more affordable meta-GGA (mGGA) DF in combination with a nonlocal correlation DF for the first time to study and gain new insights into a catalytically important surface reaction network, namely, CO hydrogenation on Cu. We show that the mGGA DF used, namely, rMS-RPBEl-rVV10, outperforms typical GGA DFs by providing similar or better predictions for metals and molecules, as well as molecule-metal surface adsorption and activation energies. Hence, it is a better choice for constructing molecule-metal surface reaction networks.

摘要

密度泛函理论被广泛用于深入了解分子 - 金属表面反应网络,这对于更好地理解催化作用非常重要。然而,众所周知,最常用于研究反应网络的广义梯度近似(GGA)密度泛函(DFs)在正确描述气相分子和金属表面方面存在困难。此外,由于自相互作用能的低估,GGA DFs通常会低估反应势垒。筛选混合GGA DFs已被证明可以减少这个问题,但目前难以广泛使用。在这项工作中,我们首次使用一种更经济实惠的元GGA(mGGA)DF与非局部相关DF相结合,来研究一个具有催化重要性的表面反应网络,即铜上的CO加氢反应,并获得新的见解。我们表明,所使用的mGGA DF,即rMS - RPBE1 - rVV10,通过对金属和分子以及分子 - 金属表面吸附和活化能提供相似或更好的预测,优于典型的GGA DFs。因此,它是构建分子 - 金属表面反应网络的更好选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a444/11145648/3d860743f28d/jp4c01110_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验