Parvarinezhad Sakineh, Salehi Mehdi, Kubicki Maciej, Eshaghi Malekshah Rahimeh
Department of Chemistry, Faculty of Science Semnan University Semnan Iran.
Department of Chemistry Adam Mickiewicz University Poznan Poland.
Appl Organomet Chem. 2022 Oct;36(10):e6836. doi: 10.1002/aoc.6836. Epub 2022 Aug 8.
Cobalt(III) complexes with Schiff base ligands derived from hydrazone, ( = ()-'-(3,5-dichloro-2-hydroxybenzylidene)-4-hydroxybenzohydrazide, = ()-'-(3,5-dichloro-2-hydroxybenzylidene)-4-hydroxybenzohydrazide (3,5-dibromo-2-hydroxybenzylidene), and = ()-4-hydroxy-'-(2-hydroxy-3-ethoxybenzylidene)benzohydrazide), were synthesized and characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, UV-Vis spectroscopy, and cyclic voltammetry. X-ray diffraction was used to determine the single crystal structure of the complex (). Co(III) was formed in a distorted, very regular octahedral coordination in this complex; three pyridine moieties complete this geometry. Schiff base complexes' redox behaviors are represented by irreversible (), quasi-reversible (), and quasi-reversible () voltammograms. A density functional theory (DFT)/B3LYP method was used to optimize cobalt complexes with a base set of 6-311G. Furthermore, fragments occupying the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were investigated at the same theoretical level. Quantum theory of atoms in molecules (QTAIM) computations were also done to study the coordination bonds and non-covalent interactions in the investigated structures. Hirshfeld surface analysis was used to investigate the nature and types of intermolecular exchanges in the crystal structure of the complex (). The capacity of cobalt complexes to bind to the major protease SARS-CoV-2 and the molecular targets of human angiotensin-converting enzyme-2 (ACE-2) was investigated using molecular docking. The molecular simulation methods used to assess the probable binding states of cobalt complexes revealed that all three complexes were stabilized in the active envelope of the enzyme by making distinct interactions with critical amino acid residues. Interestingly, compound () performed better with both molecular targets and the total energy of the system than the other complexes.
合成了钴(III)与由腙衍生的席夫碱配体形成的配合物(L1 = (E)-4-羟基-N'-(3,5-二氯-2-羟基亚苄基)苯甲酰肼,L2 = (E)-4-羟基-N'-(3,5-二溴-2-羟基亚苄基)苯甲酰肼,L3 = (E)-4-羟基-N'-(2-羟基-3-乙氧基亚苄基)苯甲酰肼),并通过元素分析、傅里叶变换红外(FT-IR)光谱、紫外可见光谱和循环伏安法对其进行了表征。利用X射线衍射确定了配合物(L1)的单晶结构。在此配合物中,Co(III)形成了扭曲但非常规则的八面体配位;三个吡啶部分完善了这种几何结构。席夫碱配合物的氧化还原行为由不可逆(L2)、准可逆(L3)和准可逆(L1)伏安图表示。采用密度泛函理论(DFT)/B3LYP方法,以6-311G基组对钴配合物进行了优化。此外,在相同理论水平上研究了占据最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的片段。还进行了分子中的原子量子理论(QTAIM)计算,以研究所研究结构中的配位键和非共价相互作用。利用 Hirshfeld 表面分析研究了配合物(L1)晶体结构中分子间交换的性质和类型。采用分子对接研究了钴配合物与主要蛋白酶 SARS-CoV-2 和人血管紧张素转换酶 2(ACE-2)分子靶点的结合能力。用于评估钴配合物可能结合状态的分子模拟方法表明,所有三种配合物通过与关键氨基酸残基形成不同的相互作用而稳定在酶的活性包膜中。有趣的是,化合物(L1)在两个分子靶点和系统总能量方面比其他配合物表现更好。