School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.
Angew Chem Int Ed Engl. 2022 Oct 4;61(40):e202209747. doi: 10.1002/anie.202209747. Epub 2022 Aug 25.
Impact experiments enable single particle analysis for many applications. However, the effect of the trajectory of a particle to an electrode on impact signals still requires further exploration. Here, we investigate the particle impact measurements versus motion using micromotors with controllable vertical motion. With biocatalytic cascade reactions, the micromotor system utilizes buoyancy as the driving force, thus enabling more regulated interactions with the electrode. With the aid of numerical simulations, the dynamic interactions between the electrode and micromotors are categorized into four representative patterns: approaching, departing, approaching-and-departing, and departing-and-reapproaching, which correspond well with the experimentally observed impact signals. This study offers a possibility of exploring the dynamic interactions between the electrode and particles, shedding light on the design of new electrochemical sensors.
冲击实验可以实现许多应用的单颗粒分析。然而,颗粒在撞击电极时的运动轨迹对撞击信号的影响仍需要进一步探索。在这里,我们使用具有可控垂直运动的微马达研究了颗粒撞击测量与运动之间的关系。利用生物催化级联反应,微马达系统利用浮力作为驱动力,从而能够与电极进行更可调控的相互作用。借助数值模拟,将电极和微马达之间的动态相互作用分为四种具有代表性的模式:接近、离开、先接近后离开和先离开后再接近,这与实验观察到的冲击信号非常吻合。这项研究为探索电极与颗粒之间的动态相互作用提供了可能,为新型电化学传感器的设计提供了思路。