Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA.
Department of Psychiatry, New York University Langone Health, New York, NY, USA.
Autophagy. 2022 Nov;18(11):2763-2764. doi: 10.1080/15548627.2022.2110729. Epub 2022 Aug 23.
Genetic evidence has increasingly linked lysosome dysfunction to an impaired autophagy-lysosomal pathway (ALP) flux in Alzheimer disease (AD) although the relationship of these abnormalities to other pathologies is unclear. In our recent investigation on the origin of impaired autophagic flux in AD, we established the critical early role of defective lysosomes in five mouse AD models. To assess alterations of autophagy and ALP vesicle acidification, we expressed eGFP-mRFP-LC3 specifically in neurons. We discovered that autophagy dysfunction in these models arises from exceptionally early failure of autolysosome/lysosome acidification, which then drives downstream AD pathogenesis. Extreme autophagic stress in compromised but still intact neurons causes autophagic vacuoles (AVs) containing toxic APP metabolites, Aβ/β-CTFs, to pack into huge blebs and protrude from the perikaryon membrane. Most notably, AVs also coalesce with ER tubules and yield fibrillar β-amyloid within these tubules. Collectively, amyloid immunoreactivity within these intact neurons assumes the appearance of amyloid-plaques, and indeed, their eventual death transforms them into extracellular plaque lesions. Quantitative analysis confirms that neurons undergoing this transformation are the principal source of β-amyloid-plaques in APP-AD models. These findings prompt reconsideration of the conventionally accepted sequence of events in plaque formation and may help explain the inefficacy of Aβ/amyloid vaccine therapies.
遗传证据越来越多地将溶酶体功能障碍与阿尔茨海默病 (AD) 中受损的自噬溶酶体途径 (ALP) 通量联系起来,尽管这些异常与其他病理学的关系尚不清楚。在我们最近对 AD 中受损自噬通量起源的研究中,我们在五种 AD 模型中确立了缺陷溶酶体的关键早期作用。为了评估自噬和 ALP 囊泡酸化的变化,我们专门在神经元中表达了 eGFP-mRFP-LC3。我们发现,这些模型中的自噬功能障碍源于自溶酶体/溶酶体酸化的异常早期失效,随后驱动 AD 发病机制的下游。受损但仍完整的神经元中极端的自噬应激导致含有毒性 APP 代谢物 Aβ/β-CTFs 的自噬空泡 (AVs) 包装成巨大的泡状突起并从核周体膜突出。值得注意的是,AVs 还与 ER 小管融合,并在这些小管内产生纤维状β-淀粉样蛋白。总的来说,这些完整神经元内的淀粉样蛋白免疫反应呈现出淀粉样斑块的外观,事实上,它们的最终死亡将它们转化为细胞外斑块病变。定量分析证实,经历这种转化的神经元是 APP-AD 模型中β-淀粉样蛋白斑块的主要来源。这些发现促使人们重新考虑斑块形成中传统上被接受的事件顺序,并可能有助于解释 Aβ/淀粉样蛋白疫苗治疗的无效性。