Suppr超能文献

用于骨组织工程应用的 3D 打印聚己内酯/生物玻璃复合材料支架的制造、形态、机械和生物性能。

Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications.

机构信息

School of Engineering of São Carlos, University of São Paulo, Avenida Trabalhador São-carlense, 400, São Carlos 13566-590, Brazil.

Three-Dimensional Technologies Division, Renato Archer Information Technology Center, Rodovia Dom Pedro I, km 143, Campinas 13069-901, Brazil.

出版信息

Biomed Mater. 2022 Aug 22;17(5). doi: 10.1088/1748-605X/ac88ad.

Abstract

Several techniques, such as additive manufacturing, have been used for the manufacture of polymer-ceramic composite scaffolds for bone tissue engineering. A new extruder head recently developed for improving the manufacturing process is an experimental 3D printer Fab@CTI that enables the use of ceramic powders in the processing of composite materials or polymer blends. Still, the manufacturing process needs improvement to promote the dispersion of ceramic particles in the polymer matrix. This article addresses the manufacture of scaffolds by 3D printing from mixtures of poly(ϵ-caprolactone) (PCL) and a glass powder of same composition of 45S5Bioglass®, labeled as synthesized bioglass (SBG), according to two different methods that investigated the efficiency of the new extruder head. The first one is a single extrusion process in a Fab@CTI 3D printer, and the other consists in the pre-processing of the PCL-SBG mixture in a mono-screw extruder with a Maddock® element, followed by direct extrusion in the experimental Fab@CTI 3D printer. The morphological characterization of the extruded samples by scanning electron microscope showed an architecture of 0°/90° interconnected struts and suitable porosity for bone tissue engineering applications. Scaffolds fabricated by two methods shows compressive modulus ranging from 54.4 ± 14.2 to 155.9 ± 20.4 MPa, results that are compatible to use in bone tissue engineering. Cytotoxicity assays showed non-toxic effects and viability forMG-63 cell proliferation. Alizarin Red staining test showed calcium deposition in all scaffolds, which suggests PCL/SBG composites promising candidates for use in bone tissue engineering. Results of cell morphology suggest more cell growth and adhesion for scaffolds fabricated using the pre-processing in a mono-screw extruder.

摘要

几种技术,如增材制造,已被用于制造用于骨组织工程的聚合物-陶瓷复合支架。最近开发的一种用于改进制造工艺的新型挤出头是一种实验性的 3D 打印机 Fab@CTI,它可以在复合材料或聚合物共混物的加工中使用陶瓷粉末。然而,制造工艺仍需要改进,以促进陶瓷颗粒在聚合物基体中的分散。本文采用聚己内酯(PCL)和具有相同组成的 45S5Bioglass®玻璃粉末的混合物,通过两种不同的方法,利用新的挤出头来制造支架,探讨了挤出头的效率。第一种方法是在 Fab@CTI 3D 打印机中进行单一挤出过程,另一种方法是在 Maddock®元件的单螺杆挤出机中对 PCL-SBG 混合物进行预处理,然后在实验性的 Fab@CTI 3D 打印机中直接挤出。扫描电子显微镜对挤出样品的形态学特征表明,具有 0°/90°互联支柱的结构和适合骨组织工程应用的孔隙率。两种方法制备的支架的压缩模量范围为 54.4±14.2 至 155.9±20.4MPa,结果与骨组织工程中使用的结果兼容。细胞毒性试验显示出非毒性作用和 MG-63 细胞增殖的活力。茜素红染色试验表明所有支架中都有钙沉积,这表明 PCL/SBG 复合材料有望用于骨组织工程。细胞形态学结果表明,使用单螺杆挤出机进行预处理制备的支架具有更多的细胞生长和粘附。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验