Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI.
Department of Care Management Analytics, Blue Cross Blue Shield of Michigan, Detroit, MI.
Am J Obstet Gynecol. 2023 Jan;228(1):76.e1-76.e10. doi: 10.1016/j.ajog.2022.07.062. Epub 2022 Aug 7.
DNA cytosine nucleotide methylation (epigenomics and epigenetics) is an important mechanism for controlling gene expression in cardiac development. Combined artificial intelligence and whole-genome epigenomic analysis of circulating cell-free DNA in maternal blood has the potential for the detection of fetal congenital heart defects.
This study aimed to use genome-wide DNA cytosine methylation and artificial intelligence analyses of circulating cell-free DNA for the minimally invasive detection of fetal congenital heart defects.
In this prospective study, whole-genome cytosine nucleotide methylation analysis was performed on circulating cell-free DNA using the Illumina Infinium MethylationEPIC BeadChip array. Multiple artificial intelligence approaches were evaluated for the detection of congenital hearts. The Ingenuity Pathway Analysis program was used to identify gene pathways that were epigenetically altered and important in congenital heart defect pathogenesis to further elucidate the pathogenesis of isolated congenital heart defects.
There were 12 cases of isolated nonsyndromic congenital heart defects and 26 matched controls. A total of 5918 cytosine nucleotides involving 4976 genes had significantly altered methylation, that is, a P value of <.05 along with ≥5% whole-genome cytosine nucleotide methylation difference, in congenital heart defect cases vs controls. Artificial intelligence analysis of the methylation data achieved excellent congenital heart defect predictive accuracy (areas under the receiver operating characteristic curve, ≥0.92). For example, an artificial intelligence model using a combination of 5 whole-genome cytosine nucleotide markers achieved an area under the receiver operating characteristic curve of 0.97 (95% confidence interval, 0.87-1.0) with 98% sensitivity and 94% specificity. We found epigenetic changes in genes and gene pathways involved in the following important cardiac developmental processes: "cardiovascular system development and function," "cardiac hypertrophy," "congenital heart anomaly," and "cardiovascular disease." This lends biologic plausibility to our findings.
This study reported the feasibility of minimally invasive detection of fetal congenital heart defect using artificial intelligence and DNA methylation analysis of circulating cell-free DNA for the prediction of fetal congenital heart defect. Furthermore, the findings supported an important role of epigenetic changes in congenital heart defect development.
DNA 胞嘧啶核苷酸甲基化(表观基因组学和表观遗传学)是控制心脏发育中基因表达的重要机制。结合人工智能和母体血液循环无细胞 DNA 的全基因组表观基因组分析,有可能检测到胎儿先天性心脏缺陷。
本研究旨在使用全基因组 DNA 胞嘧啶核苷酸甲基化和循环无细胞 DNA 的人工智能分析,对胎儿先天性心脏缺陷进行微创检测。
在这项前瞻性研究中,使用 Illumina Infinium MethylationEPIC BeadChip 阵列对循环无细胞 DNA 进行全基因组胞嘧啶核苷酸甲基化分析。评估了多种人工智能方法来检测先天性心脏病。使用 Ingenuity Pathway Analysis 程序鉴定了在先天性心脏病发病机制中发生表观遗传改变且重要的基因途径,以进一步阐明孤立性先天性心脏病的发病机制。
有 12 例孤立性非综合征型先天性心脏缺陷和 26 例匹配对照。与对照组相比,先天性心脏缺陷病例中共有 5918 个涉及 4976 个基因的胞嘧啶核苷酸发生了显著的甲基化改变,即 P 值<.05 且全基因组胞嘧啶核苷酸甲基化差异≥5%。对甲基化数据进行人工智能分析可达到出色的先天性心脏病预测准确性(受试者工作特征曲线下面积,≥0.92)。例如,使用 5 个全基因组胞嘧啶核苷酸标志物组合的人工智能模型达到了 0.97 的受试者工作特征曲线下面积(95%置信区间,0.87-1.0),具有 98%的敏感性和 94%的特异性。我们发现了涉及以下重要心脏发育过程的基因和基因途径的表观遗传变化:“心血管系统发育和功能”、“心脏肥大”、“先天性心脏异常”和“心血管疾病”。这为我们的发现提供了生物学上的合理性。
本研究报告了使用人工智能和循环无细胞 DNA 的 DNA 甲基化分析对胎儿先天性心脏缺陷进行微创检测的可行性,用于预测胎儿先天性心脏缺陷。此外,这些发现支持了表观遗传变化在先天性心脏缺陷发育中的重要作用。