Suppr超能文献

生物信息学与机器学习算法的综合分析确定了一种基于共刺激分子的新型诊断模型,用于预测肺腺癌的免疫微环境状态。

Integrative Analysis of Bioinformatics and Machine Learning Algorithms Identifies a Novel Diagnostic Model Based on Costimulatory Molecule for Predicting Immune Microenvironment Status in Lung Adenocarcinoma.

作者信息

Zhai Wen-Yu, Duan Fang-Fang, Wang Yi-Zhi, Wang Jun-Ye, Zhao Ze-Rui, Lin Yao-Bin, Rao Bing-Yu, Chen Si, Zheng Lie, Long Hao

机构信息

Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China.

Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.

出版信息

Am J Pathol. 2022 Oct;192(10):1433-1447. doi: 10.1016/j.ajpath.2022.06.015. Epub 2022 Aug 7.

Abstract

Costimulatory molecules are an indispensable signal for activating immune cells. However, the features of many costimulatory molecule genes (CMGs) in lung adenocarcinoma (LUAD) are poorly understood. This study systematically explored expression patterns of CMGs in the tumor immune microenvironment (TIME) status of patients with LUAD. Their expression profiles were downloaded from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Two robust TIME subtypes ("hot" and "cold") were classified by K-means clustering and estimation of stromal and immune cells in malignant tumor tissues using expression data. The "hot" subtype presented higher infiltration in activated immune cells and enrichments in the immune cell receptor signaling pathway and adaptive immune response. Three CMGs (CD80, LTB, and TNFSF8) were screened as final diagnostic markers by means of Least Absolute Shrinkage Selection Operator and Support Vector Machine-Recursive Feature Elimination algorithms. Accordingly, the diagnostic nomogram for predicting individualized TIME status showed satisfactory diagnostic accuracy in The Cancer Genome Atlas training cohort as well as GSE31210 and GSE180347 validation cohorts. Immunohistochemistry staining of 16 specimens revealed an apparently positive correlation between the expression of CMG biomarkers and pathologic response to immunotherapy. Thus, this diagnostic nomogram provided individualized predictions in TIME status of LUAD patients with good predictive accuracy, which could serve as a potential tool for identifying ideal candidates for immunotherapy.

摘要

共刺激分子是激活免疫细胞不可或缺的信号。然而,人们对肺腺癌(LUAD)中许多共刺激分子基因(CMGs)的特征了解甚少。本研究系统地探索了CMGs在LUAD患者肿瘤免疫微环境(TIME)状态下的表达模式。其表达谱数据从癌症基因组图谱(The Cancer Genome Atlas)和基因表达综合数据库(Gene Expression Omnibus)下载。通过K均值聚类以及利用表达数据估计恶性肿瘤组织中的基质细胞和免疫细胞,将TIME分为两种明显不同的亚型(“热”和“冷”)。“热”亚型在活化免疫细胞中表现出更高的浸润水平,并且在免疫细胞受体信号通路和适应性免疫反应中更为富集。通过最小绝对收缩选择算子(Least Absolute Shrinkage Selection Operator)和支持向量机递归特征消除算法(Support Vector Machine-Recursive Feature Elimination algorithms)筛选出三个CMGs(CD80、LTB和TNFSF8)作为最终诊断标志物。据此,用于预测个体TIME状态的诊断列线图在癌症基因组图谱训练队列以及GSE31210和GSE180347验证队列中显示出令人满意的诊断准确性。对16个标本进行免疫组织化学染色显示,CMG生物标志物的表达与免疫治疗的病理反应之间存在明显的正相关。因此,该诊断列线图对LUAD患者的TIME状态提供了具有良好预测准确性的个体化预测,可作为识别免疫治疗理想候选者的潜在工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验