Suppr超能文献

知识使用者调查和 Delphi 流程,以提供信息来开发一种新的偏倚风险评估工具,用于评估具有网络荟萃分析(RoB NMA 工具)的系统评价。

Knowledge user survey and Delphi process to inform development of a new risk of bias tool to assess systematic reviews with network meta-analysis (RoB NMA tool).

机构信息

Knowledge Translation Program, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada

Cochrane Hypertension Review Group, The University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

BMJ Evid Based Med. 2023 Feb;28(1):58-67. doi: 10.1136/bmjebm-2022-111944. Epub 2022 Aug 10.

Abstract

BACKGROUND

Network meta-analysis (NMA) is increasingly used in guideline development and other aspects of evidence-based decision-making. We aimed to develop a risk of bias (RoB) tool to assess NMAs (RoB NMA tool). An international steering committee recommended that the RoB NMA tool to be used in combination with the Risk of Bias in Systematic reviews (ROBIS) tool (i.e. because it was designed to assess biases only) or other similar quality appraisal tools (eg, A MeaSurement Tool to Assess systematic Reviews 2 [AMSTAR 2]) to assess quality of systematic reviews. The RoB NMA tool will assess NMA biases and limitations regarding how the analysis was planned, data were analysed and results were presented, including the way in which the evidence was assembled and interpreted.

OBJECTIVES

Conduct (a) a Delphi process to determine expert opinion on an item's inclusion and (b) a knowledge user survey to widen its impact.

DESIGN

Cross-sectional survey and Delphi process.

METHODS

Delphi panellists were asked to rate whether items should be included. All agreed-upon item were included in a second round of the survey (defined as 70% agreement). We surveyed knowledge users' views and preferences about the importance, utility and willingness to use the RoB NMA tool to evaluate evidence in practice and in policymaking. We included 12 closed and 10 open-ended questions, and we followed a knowledge translation plan to disseminate the survey through social media and professional networks.

RESULTS

22 items were entered into a Delphi survey of which 28 respondents completed round 1, and 22 completed round 2. Seven items did not reach consensus in round 2. A total of 298 knowledge users participated in the survey (14% respondent rate). 75% indicated that their organisation produced NMAs, and 78% showed high interest in the tool, especially if they had received adequate training (84%). Most knowledge users and Delphi panellists preferred a tool to assess bias in individual NMA results authors' conclusions. Response bias in our sample is a major limitation as knowledge users working in high-income countries were more represented. One of the limitations of the Delphi process is that it depends on the purposive selection of experts and their availability, thus limiting the variability in perspectives and scientific disciplines.

CONCLUSIONS

This Delphi process and knowledge user survey informs the development of the RoB NMA tool.

摘要

背景

网络荟萃分析(NMA)越来越多地应用于指南制定和循证决策的其他方面。我们旨在开发一种用于评估 NMA 的偏倚风险(RoB)工具(即 RoB NMA 工具)。一个国际指导委员会建议,将 RoB NMA 工具与系统评价偏倚风险(ROBIS)工具(即由于它旨在评估偏倚)或其他类似的质量评估工具(如评估系统评价的测量工具 2 [AMSTAR 2])结合使用,以评估系统评价的质量。RoB NMA 工具将评估 NMA 分析计划、数据分析和结果呈现方面的偏倚和局限性,包括证据的组合和解释方式。

目的

(a)进行德尔菲流程,以确定专家对项目纳入的意见;(b)进行知识使用者调查,以扩大其影响。

设计

横断面调查和德尔菲流程。

方法

德尔菲小组成员被要求对项目是否应纳入进行评分。所有达成一致的项目均纳入第二轮调查(定义为 70%的一致性)。我们调查了知识使用者对 RoB NMA 工具在实践和决策制定中评估证据的重要性、实用性和使用意愿的看法和偏好。我们包括了 12 个封闭式和 10 个开放式问题,并按照知识转化计划通过社交媒体和专业网络传播调查。

结果

22 个项目进入德尔菲调查,其中 28 名受访者完成了第一轮,22 名完成了第二轮。第二轮有 7 个项目未达成共识。共有 298 名知识使用者参与了调查(14%的回复率)。75%的受访者表示他们的组织制作了 NMA,78%的受访者对该工具表现出浓厚的兴趣,特别是如果他们接受了足够的培训(84%)。大多数知识使用者和德尔菲小组成员更喜欢评估单个 NMA 结果偏倚的工具,而不是评估作者结论的工具。我们样本中的回应偏差是一个主要限制因素,因为高收入国家的知识使用者参与度更高。德尔菲流程的一个限制是,它取决于专家的有目的选择及其可用性,因此限制了观点和科学学科的多样性。

结论

本德尔菲流程和知识使用者调查为 RoB NMA 工具的开发提供了信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c786/11372759/6404da55db5c/bmjebm-2022-111944f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验