Ren Bohua, Zhang Zhen, Wen Guobin, Zhang Xiaowen, Xu Mi, Weng Yueying, Nie Yihang, Dou Haozhen, Jiang Yi, Deng Ya-Ping, Sun Guiru, Luo Dan, Shui Lingling, Wang Xin, Feng Ming, Yu Aiping, Chen Zhongwei
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China.
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
Adv Mater. 2022 Sep;34(38):e2204637. doi: 10.1002/adma.202204637. Epub 2022 Aug 21.
Electrochemical CO reduction to CO is a potential sustainable strategy for alleviating CO emission and producing valuable fuels. In the quest to resolve its current problems of low-energy efficiency and insufficient durability, a dual-scale design strategy is proposed by implanting a non-noble active Sn-ZnO heterointerface inside the nanopores of high-surface-area carbon nanospheres (Sn-ZnO@HC). The metal d-bandwidth tuning of Sn and ZnO alters the extent of substrate-molecule orbital mixing, facilitating the breaking of the *COOH intermediate and the yield of CO. Furthermore, the confinement effect of tailored nanopores results in a beneficial pH distribution in the local environment around the Sn-ZnO nanoparticles and protects them against leaching and aggregating. Through integrating electronic and nanopore-scale control, Sn-ZnO@HC achieves a quite low potential of -0.53 V vs reversible hydrogen electrode (RHE) with 91% Faradaic efficiency for CO and an ultralong stability of 240 h. This work provides proof of concept for the multiscale design of electrocatalysts.
将电化学CO还原为CO是缓解CO排放和生产有价值燃料的一种潜在可持续策略。为了解决其目前存在的低能量效率和耐久性不足的问题,通过在高表面积碳纳米球(Sn-ZnO@HC)的纳米孔内植入非贵金属活性Sn-ZnO异质界面,提出了一种双尺度设计策略。Sn和ZnO的金属d带宽调谐改变了底物-分子轨道混合的程度,促进了*COOH中间体的断裂和CO的生成。此外,定制纳米孔的限域效应导致Sn-ZnO纳米颗粒周围局部环境中有益的pH分布,并保护它们不被浸出和聚集。通过整合电子和纳米孔尺度控制,Sn-ZnO@HC相对于可逆氢电极(RHE)实现了相当低的-0.53 V电位,对CO的法拉第效率为91%,并且具有240 h的超长稳定性。这项工作为电催化剂的多尺度设计提供了概念验证。