Wen Guobin, Ren Bohua, Liu Yinyi, Dong Silong, Luo Dan, Jin Mingliang, Wang Xin, Yu Aiping, Chen Zhongwei
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, China.
JACS Au. 2023 Jul 25;3(8):2046-2061. doi: 10.1021/jacsau.3c00174. eCollection 2023 Aug 28.
Electrochemical CO upgrade offers an artificial route for carbon recycling and neutralization, while its widespread implementation relies heavily on the simultaneous enhancement of mass transfer and reaction kinetics to achieve industrial conversion rates. Nevertheless, such a multiscale challenge calls for trans-scale electrode engineering. Herein, three scales are highlighted to disclose the key factors of CO electrolysis, including triple-phase boundaries, reaction microenvironment, and catalytic surface coordination. Furthermore, the advanced types of electrolyzers with various electrode design strategies are surveyed and compared to guide the system architectures for continuous conversion. We further offer an outlook on challenges and opportunities for the grand-scale application of CO electrolysis. Hence, this comprehensive Perspective bridges the gaps between electrode research and CO electrolysis practices. It contributes to facilitating the mixed reaction and mass transfer process, ultimately enabling the on-site recycling of CO emissions from industrial plants and achieving net negative emissions.
电化学一氧化碳升级为碳循环和中和提供了一条人工途径,而其广泛应用在很大程度上依赖于同时强化传质和反应动力学以实现工业转化率。然而,这样一个多尺度挑战需要跨尺度电极工程。在此,突出了三个尺度以揭示一氧化碳电解的关键因素,包括三相边界、反应微环境和催化表面配位。此外,还对具有各种电极设计策略的先进类型电解槽进行了调研和比较,以指导连续转化的系统架构。我们还对一氧化碳电解大规模应用的挑战和机遇进行了展望。因此,这篇全面的综述弥合了电极研究与一氧化碳电解实践之间的差距。它有助于促进混合反应和传质过程,最终实现工业工厂现场一氧化碳排放的循环利用并实现净负排放。