Suppr超能文献

深度学习方法在利用高光谱成像进行地理来源识别中的应用与解读。

Application and interpretation of deep learning methods for the geographical origin identification of using hyperspectral imaging.

作者信息

Yan Tianying, Duan Long, Chen Xiaopan, Gao Pan, Xu Wei

机构信息

College of Information Science and Technology, Shihezi University Shihezi 832003 China

Key Laboratory of Oasis Ecology Agriculture, Shihezi University Shihezi 832003 China.

出版信息

RSC Adv. 2020 Nov 18;10(68):41936-41945. doi: 10.1039/d0ra06925f. eCollection 2020 Nov 11.

Abstract

is used as a functional food and traditional medicine. The geographical origin of is a determinant factor influencing the chemical and physical properties as well as its medicinal and health effects. The visible/near-infrared (Vis/NIR) (376-1044 nm) and near-infrared (NIR) hyperspectral imaging (915-1699 nm) were used to identify the geographical origin of . Convolutional neural network (CNN) and recurrent neural network (RNN) models in deep learning methods were built using extracted spectra, with logistic regression (LR) and support vector machine (SVM) models as comparisons. For both spectral ranges, the deep learning methods, LR and SVM all exhibited good results. The classification accuracy was over 90% for the calibration, validation, and prediction sets by the LR, CNN, and RNN models. Slight differences in classification performances existed between the two spectral ranges. Further, interpretation of the CNN model was conducted to identify the important wavelengths, and the wavelengths with high contribution rates that affected the discriminant analysis were consistent with the spectral differences. Thus, the overall results illustrate that hyperspectral imaging with deep learning methods can be used to identify the geographical origin of , which provides a new basis for related research.

摘要

被用作功能性食品和传统药物。其地理来源是影响其化学和物理性质以及药用和健康效果的一个决定性因素。可见/近红外(Vis/NIR)(376 - 1044纳米)和近红外(NIR)高光谱成像(915 - 1699纳米)被用于识别其地理来源。利用提取的光谱构建了深度学习方法中的卷积神经网络(CNN)和循环神经网络(RNN)模型,并以逻辑回归(LR)和支持向量机(SVM)模型作为比较。对于这两个光谱范围,深度学习方法、LR和SVM均表现出良好的结果。LR、CNN和RNN模型在校准集、验证集和预测集上的分类准确率均超过90%。两个光谱范围之间的分类性能存在细微差异。此外,对CNN模型进行了解释以识别重要波长,影响判别分析的高贡献率波长与光谱差异一致。因此,总体结果表明,结合深度学习方法的高光谱成像可用于识别其地理来源,这为相关研究提供了新的依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad23/9057915/f44f497453ac/d0ra06925f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验