School of Geography, Nanjing Normal University, Nanjing, 210023, China.
Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
Microb Ecol. 2023 Apr;85(3):980-997. doi: 10.1007/s00248-022-02097-3. Epub 2022 Aug 11.
Application of reductive soil disinfestation (RSD), biochar, and antagonistic microbes have become increasingly popular strategies in a microbiome-based approach to control soil-borne diseases. The combined effect of these remediation methods on the suppression of cucumber Fusarium wilt associated with microbiota reconstruction, however, is still unknown. In this study, we applied RSD treatment together with biochar and microbial application of Trichoderma and Bacillus spp. in Fusarium-diseased cucumbers to investigate their effects on wilt suppression, soil chemical changes, microbial abundances, and the rhizosphere communities. The results showed that initial RSD treatment followed by biochar amendment (RSD-BC) and combined applications of microbial inoculation and biochar (RSD-SQR-T37-BC) decreased nitrate concentration and raised soil pH, soil organic carbon (SOC), and ammonium in the treated soils. Under RSD, the applications of Bacillus (RSD-SQR), Trichoderma (RSD-T37), and biochar (RSD-BC) suppressed wilt incidence by 26.8%, 37.5%, and 32.5%, respectively, compared to non-RSD treatments. Moreover, RSD-SQR-T37-BC and RSD-T37 caused greater suppressiveness of Fusarium wilt and F. oxysporum by 57.0 and 33.5%, respectively. Rhizosphere beta diversity and alpha diversity revealed a difference between RSD-treated and non-RSD microbial groups. The significant increase in the abundance, richness, and diversity of bacteria, and the decrease in the abundance and diversity of fungi under RSD-induced treatments attributed to the general suppression. Identified bacterial (Bacillus, Pseudoxanthomonas, Flavobacterium, Flavisolibacter, and Arthrobacter) and fungal (Trichoderma, Chaetomium, Cladosporium, Psathyrella, and Westerdykella) genera were likely the potential antagonists of specific disease suppression for their significant increase of abundances under RSD-treated soils and high relative importance in linear models. This study infers that the RSD treatment induces potential synergies with biochar amendment and microbial applications, resulting in enhanced general-to-specific suppression mechanisms by changing the microbial community composition in the cucumber rhizosphere.
还原土壤消毒(RSD)、生物炭以及拮抗微生物的应用在基于微生物组的方法中越来越受到关注,用于控制土传病害。然而,这些修复方法在抑制与微生物群落重建相关的黄瓜枯萎病方面的综合效果尚不清楚。在这项研究中,我们在受枯萎病感染的黄瓜中应用 RSD 处理,同时结合生物炭和 Trichoderma 和 Bacillus spp. 的微生物应用,以研究它们对萎蔫抑制、土壤化学变化、微生物丰度和根际群落的影响。结果表明,初始 RSD 处理后进行生物炭改良(RSD-BC)和微生物接种与生物炭联合应用(RSD-SQR-T37-BC)降低了处理土壤中的硝酸盐浓度并提高了土壤 pH 值、土壤有机碳(SOC)和铵。在 RSD 下,与非 RSD 处理相比,Bacillus(RSD-SQR)、Trichoderma(RSD-T37)和生物炭(RSD-BC)的应用分别抑制了 26.8%、37.5%和 32.5%的萎蔫发病率。此外,RSD-SQR-T37-BC 和 RSD-T37 对枯萎病和 F. oxysporum 的抑制作用分别提高了 57.0%和 33.5%。根际 beta 多样性和 alpha 多样性揭示了 RSD 处理和非 RSD 微生物组之间的差异。在 RSD 诱导处理下,细菌、放线菌、真菌的丰度、丰富度和多样性显著增加,而真菌的丰度和多样性则降低,这归因于总体抑制作用。鉴定出的细菌(Bacillus、Pseudoxanthomonas、Flavobacterium、Flavisolibacter 和 Arthrobacter)和真菌(Trichoderma、Chaetomium、Cladosporium、Psathyrella 和 Westerdykella)属在 RSD 处理土壤中的丰度显著增加,在线性模型中具有较高的相对重要性,可能是特定疾病抑制的潜在拮抗剂。本研究推断,RSD 处理与生物炭改良和微生物应用具有潜在协同作用,通过改变黄瓜根际微生物群落组成,增强了一般性到特异性抑制机制。