Suppr超能文献

基于深度学习的在线自由呼吸心电图运动心血管磁共振电影。

An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance.

机构信息

Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA.

Siemens Medical Solutions USA, Inc, Chicago, IL, USA.

出版信息

J Cardiovasc Magn Reson. 2022 Aug 11;24(1):47. doi: 10.1186/s12968-022-00879-9.

Abstract

BACKGROUND

Exercise cardiovascular magnetic resonance (Ex-CMR) is a promising stress imaging test for coronary artery disease (CAD). However, Ex-CMR requires accelerated imaging techniques that result in significant aliasing artifacts. Our goal was to develop and evaluate a free-breathing and electrocardiogram (ECG)-free real-time cine with deep learning (DL)-based radial acceleration for Ex-CMR.

METHODS

A 3D (2D + time) convolutional neural network was implemented to suppress artifacts from aliased radial cine images. The network was trained using synthetic real-time radial cine images simulated using breath-hold, ECG-gated segmented Cartesian k-space data acquired at 3 T from 503 patients at rest. A prototype real-time radial sequence with acceleration rate = 12 was used to collect images with inline DL reconstruction. Performance was evaluated in 8 healthy subjects in whom only rest images were collected. Subsequently, 14 subjects (6 healthy and 8 patients with suspected CAD) were prospectively recruited for an Ex-CMR to evaluate image quality. At rest (n = 22), standard breath-hold ECG-gated Cartesian segmented cine and free-breathing ECG-free real-time radial cine images were acquired. During post-exercise stress (n = 14), only real-time radial cine images were acquired. Three readers evaluated residual artifact level in all collected images on a 4-point Likert scale (1-non-diagnostic, 2-severe, 3-moderate, 4-minimal).

RESULTS

The DL model substantially suppressed artifacts in real-time radial cine images acquired at rest and during post-exercise stress. In real-time images at rest, 89.4% of scores were moderate to minimal. The mean score was 3.3 ± 0.7, representing increased (P < 0.001) artifacts compared to standard cine (3.9 ± 0.3). In real-time images during post-exercise stress, 84.6% of scores were moderate to minimal, and the mean artifact level score was 3.1 ± 0.6. Comparison of left-ventricular (LV) measures derived from standard and real-time cine at rest showed differences in LV end-diastolic volume (3.0 mL [- 11.7, 17.8], P = 0.320) that were not significantly different from zero. Differences in measures of LV end-systolic volume (7.0 mL [- 1.3, 15.3], P < 0.001) and LV ejection fraction (- 5.0% [- 11.1, 1.0], P < 0.001) were significant. Total inline reconstruction time of real-time radial images was 16.6 ms per frame.

CONCLUSIONS

Our proof-of-concept study demonstrated the feasibility of inline real-time cine with DL-based radial acceleration for Ex-CMR.

摘要

背景

运动心血管磁共振(Ex-CMR)是一种有前途的冠状动脉疾病(CAD)应激成像测试。然而,Ex-CMR 需要加速成像技术,这会导致明显的混叠伪影。我们的目标是开发和评估一种基于深度学习(DL)的自由呼吸和无心电图(ECG)实时电影的径向加速在 Ex-CMR 中的应用。

方法

实现了一个 3D(2D+时间)卷积神经网络,以抑制来自混叠径向电影图像的伪影。该网络使用来自 3T 上 503 名休息患者的呼吸暂停、心电图门控分段笛卡尔 k 空间数据模拟的合成实时径向电影图像进行训练。使用加速率=12 的原型实时径向序列采集带有在线 DL 重建的图像。在 8 名健康受试者中进行了性能评估,这些受试者仅采集了休息图像。随后,前瞻性招募了 14 名疑似 CAD 的患者(6 名健康患者和 8 名患者)进行 Ex-CMR 以评估图像质量。在休息时(n=22),采集了标准呼吸暂停心电图门控笛卡尔分段电影和自由呼吸无心电图实时径向电影图像。在运动后应激时(n=14),仅采集实时径向电影图像。三位读者使用 4 分李克特量表(1-不可诊断,2-严重,3-中度,4-最小)对所有采集图像的残留伪影水平进行评估。

结果

DL 模型大大抑制了休息时和运动后应激时实时径向电影图像中的伪影。在休息时的实时图像中,89.4%的评分是中度到最小。平均评分为 3.3±0.7,代表与标准电影(3.9±0.3)相比,伪影增加(P<0.001)。在运动后应激的实时图像中,84.6%的评分是中度到最小,平均伪影水平评分为 3.1±0.6。比较休息时标准和实时电影的左心室(LV)测量值,LV 舒张末期容积(3.0 mL[-11.7, 17.8],P=0.320)存在差异,但与零无显著差异。LV 收缩末期容积(7.0 mL[-1.3, 15.3],P<0.001)和 LV 射血分数(-5.0%[-11.1, 1.0],P<0.001)的差异有统计学意义。实时径向图像的总在线重建时间为每帧 16.6 毫秒。

结论

我们的概念验证研究证明了基于深度学习的用于 Ex-CMR 的在线实时电影的径向加速的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48df/9367083/6ca766ba226f/12968_2022_879_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验