Suppr超能文献

基于变形编码的深度学习 Transformer 用于高帧率心脏 Cine MRI。

Deformation-encoding Deep Learning Transformer for High-Frame-Rate Cardiac Cine MRI.

机构信息

From the Cardiovascular Medicine Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 (M.A.M., F.G., S.N., S.A., A.A., S.Y., J.R., R.N.); Division of Cardiology, Department of Medicine, Tufts Medical Center, Boston, Mass (M.S.M., E.J.R.); Division of Cardiology, Weill Cornell Medicine, New York, NY (J.K., J.W.W.); and Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC (R.M.J.).

出版信息

Radiol Cardiothorac Imaging. 2024 Jun;6(3):e230177. doi: 10.1148/ryct.230177.

Abstract

Purpose To develop a deep learning model for increasing cardiac cine frame rate while maintaining spatial resolution and scan time. Materials and Methods A transformer-based model was trained and tested on a retrospective sample of cine images from 5840 patients (mean age, 55 years ± 19 [SD]; 3527 male patients) referred for clinical cardiac MRI from 2003 to 2021 at nine centers; images were acquired using 1.5- and 3-T scanners from three vendors. Data from three centers were used for training and testing (4:1 ratio). The remaining data were used for external testing. Cines with downsampled frame rates were restored using linear, bicubic, and model-based interpolation. The root mean square error between interpolated and original cine images was modeled using ordinary least squares regression. In a prospective study of 49 participants referred for clinical cardiac MRI (mean age, 56 years ± 13; 25 male participants) and 12 healthy participants (mean age, 51 years ± 16; eight male participants), the model was applied to cines acquired at 25 frames per second (fps), thereby doubling the frame rate, and these interpolated cines were compared with actual 50-fps cines. The preference of two readers based on perceived temporal smoothness and image quality was evaluated using a noninferiority margin of 10%. Results The model generated artifact-free interpolated images. Ordinary least squares regression analysis accounting for vendor and field strength showed lower error ( < .001) with model-based interpolation compared with linear and bicubic interpolation in internal and external test sets. The highest proportion of reader choices was "no preference" (84 of 122) between actual and interpolated 50-fps cines. The 90% CI for the difference between reader proportions favoring collected (15 of 122) and interpolated (23 of 122) high-frame-rate cines was -0.01 to 0.14, indicating noninferiority. Conclusion A transformer-based deep learning model increased cardiac cine frame rates while preserving both spatial resolution and scan time, resulting in images with quality comparable to that of images obtained at actual high frame rates. Functional MRI, Heart, Cardiac, Deep Learning, High Frame Rate © RSNA, 2024.

摘要

目的 开发一种深度学习模型,在保持空间分辨率和扫描时间的同时提高心脏电影帧率。

材料与方法 基于转换器的模型在 2003 年至 2021 年期间从 9 个中心对 5840 例(平均年龄 55 岁±19 [SD];3527 例男性)临床心脏 MRI 参考患者的回顾性电影图像样本上进行了训练和测试;图像使用来自 3 个供应商的 1.5-T 和 3-T 扫描仪采集。来自 3 个中心的数据用于训练和测试(比例为 4:1)。其余数据用于外部测试。使用线性、双三次和基于模型的内插来恢复具有降采样帧率的电影。使用普通最小二乘回归对插值和原始电影图像之间的均方根误差进行建模。在一项针对 49 名临床心脏 MRI 参考患者(平均年龄 56 岁±13;25 名男性患者)和 12 名健康参与者(平均年龄 51 岁±16;8 名男性参与者)的前瞻性研究中,该模型应用于以 25 帧/秒(fps)采集的电影,从而将帧率提高一倍,并且将这些插值电影与实际的 50-fps 电影进行了比较。两名读者根据感知的时间平滑度和图像质量对基于偏好的非劣效性边界为 10%的模型进行评估。

结果 该模型生成了无伪影的插值图像。普通最小二乘回归分析考虑了供应商和场强,结果表明,与线性和双三次内插相比,基于模型的内插在内部和外部测试集中的误差更低(<.001)。在实际和插值的 50-fps 电影之间,读者选择“无偏好”的比例最高(122 个中的 84 个)。读者选择收集(122 个中的 15 个)和插值(122 个中的 23 个)高帧率电影的比例差异的 90%置信区间为-0.01 至 0.14,表明无劣效性。

结论 基于转换器的深度学习模型提高了心脏电影帧率,同时保持了空间分辨率和扫描时间,从而获得了与实际高帧率获得的图像质量相当的图像。

功能性磁共振成像、心脏、心脏、深度学习、高帧率

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69ce/11211941/56dda5b371fe/ryct.230177.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验