Suppr超能文献

基于网络数据量化气象和地理因素对中暑的影响:中国的案例研究

Web-Based Data to Quantify Meteorological and Geographical Effects on Heat Stroke: Case Study in China.

作者信息

Han Qinmei, Liu Zhao, Jia Junwen, Anderson Bruce T, Xu Wei, Shi Peijun

机构信息

State Key Laboratory of Earth Surface Processes and Resource Ecology Beijing Normal University Beijing China.

Academy of Disaster Reduction and Emergency Management Ministry of Emergency Management and Ministry of Education Beijing Normal University Beijing China.

出版信息

Geohealth. 2022 Aug 1;6(8):e2022GH000587. doi: 10.1029/2022GH000587. eCollection 2022 Aug.

Abstract

Heat stroke is a serious heat-related health outcome that can eventually lead to death. Due to the poor accessibility of heat stroke data, the large-scale relationship between heat stroke and meteorological factors is still unclear. This work aims to clarify the potential relationship between meteorological variables and heat stroke, and quantify the meteorological threshold that affected the severity of heat stroke. We collected daily heat stroke search index (HSSI) and meteorological data for the period 2013-2020 in 333 Chinese cities to analyze the relationship between meteorological variables and HSSI using correlation analysis and Random forest (RF) model. Temperature and relative humidity (RH) accounted for 62% and 9% of the changes of HSSI, respectively. In China, cases of heat stroke may start to occur when temperature exceeds 36°C and RH exceeds 58%. This threshold was 34.5°C and 79% in the north of China, and 36°C and 48% in the south of China. Compared to RH, the threshold of temperature showed a more evident difference affected by altitude and distance from the ocean, which was 35.5°C in inland cities and 36.5°C in coastal cities; 35.5°C in high-altitude cities and 36°C in low-altitude cities. Our findings provide a possible way to analyze the interaction effect of meteorological variables on heat-related illnesses, and emphasizes the effects of geographical environment. The meteorological threshold quantified in this research can also support policymaker to establish a better meteorological warning system for public health.

摘要

中暑是一种严重的与热相关的健康后果,最终可能导致死亡。由于中暑数据的可获取性较差,中暑与气象因素之间的大规模关系仍不明确。这项工作旨在阐明气象变量与中暑之间的潜在关系,并量化影响中暑严重程度的气象阈值。我们收集了中国333个城市2013 - 2020年期间的每日中暑搜索指数(HSSI)和气象数据,使用相关性分析和随机森林(RF)模型来分析气象变量与HSSI之间的关系。温度和相对湿度(RH)分别占HSSI变化的62%和9%。在中国,当温度超过36°C且RH超过58%时,可能开始出现中暑病例。在中国北方,这个阈值是34.5°C和79%,在中国南方是36°C和48%。与RH相比,温度阈值受海拔和距海洋距离的影响差异更明显,在内陆城市为35.5°C,在沿海城市为36.5°C;在高海拔城市为35.5°C,在低海拔城市为36°C。我们的研究结果为分析气象变量对与热相关疾病的相互作用效应提供了一种可能的方法,并强调了地理环境的影响。本研究中量化的气象阈值也可以支持政策制定者建立更好的公共卫生气象预警系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb25/9356531/23fb642f089d/GH2-6-e2022GH000587-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验