Suppr超能文献

用于无监督域适应的隐式任务驱动概率差异度量

Implicit Task-Driven Probability Discrepancy Measure for Unsupervised Domain Adaptation.

作者信息

Li Mao, Jiang Kaiqi, Zhang Xinhua

机构信息

Department of Computer Science, University of Illinois at Chicago Chicago, IL 60607.

出版信息

Adv Neural Inf Process Syst. 2021;34:25824-25838.

Abstract

Probability discrepancy measure is a fundamental construct for numerous machine learning models such as weakly supervised learning and generative modeling. However, most measures overlook the fact that the distributions are not the end-product of learning, but are the input of a downstream predictor. Therefore, it is important to warp the probability discrepancy measure towards the end tasks, and towards this goal, we propose a new bi-level optimization based approach so that the two distributions are compared not uniformly against the entire hypothesis space, but only with respect to the optimal predictor for the downstream end task. When applied to margin disparity discrepancy and contrastive domain discrepancy, our method significantly improves the performance in unsupervised domain adaptation, and enjoys a much more principled training process.

摘要

概率差异度量是许多机器学习模型(如弱监督学习和生成建模)的基本构建。然而,大多数度量忽略了这样一个事实,即分布不是学习的最终产物,而是下游预测器的输入。因此,将概率差异度量朝着最终任务进行调整很重要,为了实现这一目标,我们提出了一种基于双层优化的新方法,使得两个分布不是在整个假设空间上均匀比较,而是仅相对于下游最终任务的最优预测器进行比较。当应用于边际差异差异和对比域差异时,我们的方法显著提高了无监督域适应的性能,并且拥有更具原则性的训练过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffc0/9358785/f6b3b0c1239b/nihms-1769622-f0001.jpg

相似文献

4
Unsupervised and Semi-Supervised Robust Spherical Space Domain Adaptation.无监督和半监督鲁棒球面空间域适应
IEEE Trans Pattern Anal Mach Intell. 2024 Mar;46(3):1757-1774. doi: 10.1109/TPAMI.2022.3158637. Epub 2024 Feb 6.

本文引用的文献

1
Representation Learning with Statistical Independence to Mitigate Bias.利用统计独立性进行表示学习以减轻偏差。
IEEE Winter Conf Appl Comput Vis. 2021 Jan;2021:2512-2522. doi: 10.1109/wacv48630.2021.00256. Epub 2021 Jun 14.
2
A Survey of Unsupervised Deep Domain Adaptation.无监督深度域适应研究
ACM Trans Intell Syst Technol. 2020 Sep;11(5):1-46. doi: 10.1145/3400066. Epub 2020 Jul 5.
4
Domain adaptation via transfer component analysis.通过迁移成分分析实现领域自适应。
IEEE Trans Neural Netw. 2011 Feb;22(2):199-210. doi: 10.1109/TNN.2010.2091281. Epub 2010 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验