Suppr超能文献

用于潜在临床应用的成簇规律间隔短回文重复序列/CRISPR相关技术的发展

Development of clustered regularly interspaced short palindromic repeats/CRISPR-associated technology for potential clinical applications.

作者信息

Huang Yue-Ying, Zhang Xiao-Yu, Zhu Ping, Ji Ling

机构信息

School of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong Province, China.

Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518035, Guangdong Province, China.

出版信息

World J Clin Cases. 2022 Jun 26;10(18):5934-5945. doi: 10.12998/wjcc.v10.i18.5934.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins constitute the innate adaptive immune system in several bacteria and archaea. This immune system helps them in resisting the invasion of phages and foreign DNA by providing sequence-specific acquired immunity. Owing to the numerous advantages such as ease of use, low cost, high efficiency, good accuracy, and a diverse range of applications, the CRISPR-Cas system has become the most widely used genome editing technology. Hence, the advent of the CRISPR/Cas technology highlights a tremendous potential in clinical diagnosis and could become a powerful asset for modern medicine. This study reviews the recently reported application platforms for screening, diagnosis, and treatment of different diseases based on CRISPR/Cas systems. The limitations, current challenges, and future prospectus are summarized; this article would be a valuable reference for future genome-editing practices.

摘要

成簇规律间隔短回文重复序列(CRISPR)-CRISPR相关蛋白(Cas)构成了多种细菌和古生菌的天然适应性免疫系统。该免疫系统通过提供序列特异性获得性免疫,帮助它们抵抗噬菌体和外源DNA的入侵。由于具有易于使用、成本低、效率高、准确性好以及应用范围广泛等众多优点,CRISPR-Cas系统已成为应用最为广泛的基因组编辑技术。因此,CRISPR/Cas技术的出现彰显了其在临床诊断方面的巨大潜力,有望成为现代医学的有力工具。本研究综述了近期报道的基于CRISPR/Cas系统用于不同疾病筛查、诊断及治疗的应用平台。总结了其局限性、当前面临的挑战及未来展望;本文将为未来的基因组编辑实践提供有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e07/9254185/b4e680d6134a/WJCC-10-5934-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验