Suppr超能文献

《液体和生物流体的声子理论:发展与应用》

The Phonon Theory of Liquids and Biological Fluids: Developments and Applications.

机构信息

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States.

Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

出版信息

J Phys Chem Lett. 2022 Aug 11;13(31):7121-7129. doi: 10.1021/acs.jpclett.2c01779.

Abstract

Among the three basic states of matter (solid, liquid, and gas), the liquid state has always eluded general theoretical approaches for describing liquid energy and heat capacity. In this Viewpoint, we derive the phonon theory of liquids and biological fluids stemming from Frenkel's microscopic picture of the liquid state. Specifically, the theory predicts the existence of phonon gaps in vibrational spectra of liquids and a thermodynamic boundary in the supercritical state. Direct experimental evidence reaffirming these theoretical predictions was achieved through a combination of techniques using static compression X-ray diffraction and inelastic X-ray scattering on deeply supercritical argon in a diamond anvil cell. Furthermore, these findings inspired and then led to the discovery of phonon gaps in liquid crystals (mesogens), block copolymers, and biological membranes. Importantly, phonon gaps define viscoelastic crossovers in cellular membranes responsible for lipid self-diffusion, lateral molecular-level stress propagation, and passive transmembrane transport of small molecules and solutes. Finally, molecular interactions mediated by external stimuli result in synaptic activity controlling biological membranes' plasticity resulting in learning and memory. Therefore, we also discuss learning and memory effects─equally important for neuroscience as well as for the development of neuromorphic devices─facilitated in biological membranes by external stimuli.

摘要

在物质的三种基本状态(固态、液态和气态)中,液态一直难以用一般的理论方法来描述液体的能量和热容。在本观点中,我们源自 Frenkel 对液体状态的微观描述,推导出液体和生物流体的声子理论。具体而言,该理论预测了液体振动谱中存在声子能隙和超临界状态的热力学边界。通过在金刚石压腔中使用静态压缩 X 射线衍射和非弹性 X 射线散射对超临界氩的综合技术,直接获得了证实这些理论预测的实验证据。此外,这些发现启发并导致了在液晶(介晶)、嵌段共聚物和生物膜中发现声子能隙。重要的是,声子能隙定义了细胞膜中的粘弹性转变,负责脂质自扩散、侧向分子水平的应力传递以及小分子和溶质的被动跨膜转运。最后,外部刺激介导的分子相互作用导致控制生物膜可塑性的突触活动,从而实现学习和记忆。因此,我们还讨论了外部刺激促进生物膜中的学习和记忆效应——这对神经科学以及神经形态器件的发展同样重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验