Wuyuzhang Honors College, Sichuan Universitygrid.13291.38, Chengdu, Sichuan, China.
College of Life Sciences, Sichuan Universitygrid.13291.38, Chengdu, Sichuan, China.
Microbiol Spectr. 2022 Aug 31;10(4):e0130022. doi: 10.1128/spectrum.01300-22. Epub 2022 Aug 11.
The emergence of antibiotic-resistant bacteria threatens public health, and the use of broad-spectrum antibiotics often leads to unintended consequences, including disturbing the beneficial gut microbiota and resulting in secondary diseases. Therefore, developing a novel strategy that specifically kills pathogens without affecting the residential microbiota is desirable and urgently needed. Here, we report the development of a precise bactericidal system by taking advantage of CRISPR-Cas13a targeting endogenous transcripts of Salmonella enterica serovar Typhimurium delivered through a conjugative vehicle. , the CRISPR-Cas13a system exhibited specific killing, growth inhibition, and clearance of Typhimurium in mixed microbial flora. In a mouse infection model, the CRISPR-Cas13a system, when delivered by a donor Escherichia coli strain, significantly reduced Typhimurium colonization in the intestinal tract. Overall, the results demonstrate the feasibility and efficacy of the designed CRISPR-Cas13a system in selective killing of pathogens and broaden the utility of conjugation-based delivery of bactericidal approaches. Antibiotics with broad-spectrum activities are known to disturb both pathogens and beneficial gut microbiota and cause many undesired side effects, prompting increased interest in developing therapies that specifically eliminate pathogenic bacteria without damaging gut resident flora. To achieve this goal, we developed a strategy utilizing bacterial conjugation to deliver CRISPR-Cas13a programmed to specifically kill Typhimurium. This system produced pathogen-specific killing based on CRISPR RNA (crRNAs) targeting endogenous transcripts in pathogens and was shown to be effective in both and experiments. Additionally, the system can be readily delivered by conjugation and is adaptable for targeting different pathogens. With further optimization and improvement, the system has the potential to be used for biotherapy and microbial community modification.
抗生素耐药菌的出现威胁着公共健康,而广谱抗生素的使用往往会带来意想不到的后果,包括扰乱有益的肠道微生物群,并导致继发疾病。因此,开发一种专门杀死病原体而不影响居住微生物群的新型策略是可取的,也是急需的。在这里,我们报告了一种利用 CRISPR-Cas13a 靶向沙门氏菌血清型 Typhimurium 内源性转录本的精确杀菌系统的开发,该系统通过共轭载体传递。该 CRISPR-Cas13a 系统在混合微生物群中表现出对 Typhimurium 的特异性杀伤、生长抑制和清除。在小鼠感染模型中,当通过供体大肠杆菌菌株递送时,CRISPR-Cas13a 系统显著减少了肠道中 Typhimurium 的定植。总体而言,这些结果证明了设计的 CRISPR-Cas13a 系统在选择性杀伤病原体方面的可行性和功效,并拓宽了基于共轭的杀菌方法传递的应用。
具有广谱活性的抗生素已知会干扰病原体和有益的肠道微生物群,并引起许多不良的副作用,促使人们越来越有兴趣开发专门消除致病细菌而不损害肠道常驻菌群的治疗方法。为了实现这一目标,我们开发了一种利用细菌共轭传递的策略,该策略利用 CRISPR-Cas13a 编程,专门杀死 Typhimurium。该系统基于针对病原体内源性转录本的 CRISPR RNA (crRNAs) 产生针对病原体的特异性杀伤,在 和 实验中均显示出有效性。此外,该系统可以通过共轭很容易地传递,并且适用于针对不同的病原体。通过进一步的优化和改进,该系统有可能用于生物治疗和微生物群落修饰。