Suppr超能文献

基于CT影像组学列线图鉴别腮腺多形性腺瘤和沃辛瘤:一项多中心研究

Distinguishing Parotid Polymorphic Adenoma and Warthin Tumor Based on the CT Radiomics Nomogram: A Multicenter Study.

作者信息

Feng Baomin, Wang Zhou, Cui Jingjing, Li Jiacun, Xu Han, Yu Dexin, Zeng Qingshi, Xiu Jianjun

机构信息

Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences.

Department of Radiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.

出版信息

Acad Radiol. 2023 Apr;30(4):717-726. doi: 10.1016/j.acra.2022.06.017. Epub 2022 Aug 8.

Abstract

RATIONALE AND OBJECTIVES

To develop, validate, and test a comprehensive radiomics prediction model to distinguish parotid polymorphic adenomas (PAs) and warthin tumors (WTs) using clinical data and enhanced computed tomography (CT) from a multicenter cohort.

MATERIALS AND METHODS

A total of 267 patients with PAs (n =172) or WTs (n = 95) from two hospitals were randomly divided into training (n =188) and validation (n =79) datasets. Radiomics features were extracted from the enhanced CT (arterial phase) followed by dimensionality reduction. Clinical and CT features were combined to establish a prediction model. A radiomics nomogram was constructed by combining RadScore and clinical factors. Moreover, an independent dataset of 31 patients from a third hospital was employed to test the model. Thus, the performance of the nomogram, radiomics signature, and clinical models was evaluated on the training, validation, and the independent testing datasets. Receiver operating characteristic (ROC) curves were used to compare the performance, and decision curve analysis (DCA) was used to evaluate the clinical effectiveness of the model.

RESULTS

A total of 15 radiomics features were selected from CT data as the imaging markers to generate RadScores, and demographics or clinical data like age, sex, and smoking factors combined with RadScores were used to distinguish PAs and WTs based on multivariate logistic regression analyses. The results showed that radiomics nomograms combining clinical factors and RadScores provided satisfactory predictive values for distinguishing PAs from WTs, with areas under ROC curves (AUC) of 0.979, 0.922, and 0.903 for the training, validation, and the independent testing datasets, respectively. Decision curve analysis revealed that the radiomics nomogram outperformed the clinical factor models in terms of accuracy and effectiveness.

CONCLUSION

CT-based radiomics nomograms combining RadScores and clinical factors can be used to identify PAs and WTs, which may help tumor management by clinicians.

摘要

原理与目的

利用多中心队列的临床数据和增强计算机断层扫描(CT),开发、验证并测试一种综合的放射组学预测模型,以区分腮腺多形性腺瘤(PA)和沃辛瘤(WT)。

材料与方法

来自两家医院的267例PA患者(n = 172)或WT患者(n = 95)被随机分为训练集(n = 188)和验证集(n = 79)。从增强CT(动脉期)中提取放射组学特征,随后进行降维处理。将临床和CT特征相结合,建立预测模型。通过结合RadScore和临床因素构建放射组学列线图。此外,使用来自第三家医院的31例患者的独立数据集对该模型进行测试。因此,在训练集、验证集和独立测试数据集上评估列线图、放射组学特征和临床模型的性能。采用受试者操作特征(ROC)曲线比较性能,并使用决策曲线分析(DCA)评估模型的临床有效性。

结果

从CT数据中总共选择了15个放射组学特征作为影像标志物来生成RadScore,并根据多变量逻辑回归分析,将年龄、性别和吸烟因素等人口统计学或临床数据与RadScore相结合,以区分PA和WT。结果表明,结合临床因素和RadScore的放射组学列线图在区分PA和WT方面提供了令人满意的预测价值,训练集、验证集和独立测试数据集的ROC曲线下面积(AUC)分别为0.979、0.922和0.903。决策曲线分析表明,放射组学列线图在准确性和有效性方面优于临床因素模型。

结论

结合RadScore和临床因素的基于CT的放射组学列线图可用于识别PA和WT,这可能有助于临床医生进行肿瘤管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验