Cox C, Wheeless L L, Reeder J E, Robinson R D, Berkan T K
Cytometry. 1987 May;8(3):267-72. doi: 10.1002/cyto.990080306.
We consider probabilistic models for specimen classification procedures based on systems which classify individual cells as normal or abnormal. The models which we consider generalize those discussed previously by Castleman and White (Anal. Quant. Cytol. 2:117-122, 1980; Cytometry 2:155-158, 1981) and by Timmers and Gelsema (Cytometry 6:22-25, 1985). In particular, they include the biologically plausible possibility that the specimen contains cells which are intermediate between the extremes of normal and abnormal. We find that if these additional cells occur differentially in normal and abnormal specimens, then specimen classification can become substantially more efficient when the cell classifier has different error rates for these cells.
我们考虑基于将单个细胞分类为正常或异常的系统的标本分类程序的概率模型。我们所考虑的模型推广了先前由卡斯尔曼和怀特(《分析定量细胞学》2:117 - 122,1980年;《细胞计数》2:155 - 158,1981年)以及廷默斯和盖尔塞马(《细胞计数》6:22 - 25,1985年)所讨论的模型。特别地,它们包含了生物学上合理的可能性,即标本中包含处于正常和异常极端之间的细胞。我们发现,如果这些额外的细胞在正常和异常标本中差异出现,那么当细胞分类器对这些细胞具有不同的错误率时,标本分类可以变得显著更有效。