Suppr超能文献

基于单细胞分类器的标本分类改进模型。

Improved model for specimen classification based on single-cell classifiers.

作者信息

Cox C, Wheeless L L, Reeder J E, Robinson R D, Berkan T K

出版信息

Cytometry. 1987 May;8(3):267-72. doi: 10.1002/cyto.990080306.

Abstract

We consider probabilistic models for specimen classification procedures based on systems which classify individual cells as normal or abnormal. The models which we consider generalize those discussed previously by Castleman and White (Anal. Quant. Cytol. 2:117-122, 1980; Cytometry 2:155-158, 1981) and by Timmers and Gelsema (Cytometry 6:22-25, 1985). In particular, they include the biologically plausible possibility that the specimen contains cells which are intermediate between the extremes of normal and abnormal. We find that if these additional cells occur differentially in normal and abnormal specimens, then specimen classification can become substantially more efficient when the cell classifier has different error rates for these cells.

摘要

我们考虑基于将单个细胞分类为正常或异常的系统的标本分类程序的概率模型。我们所考虑的模型推广了先前由卡斯尔曼和怀特(《分析定量细胞学》2:117 - 122,1980年;《细胞计数》2:155 - 158,1981年)以及廷默斯和盖尔塞马(《细胞计数》6:22 - 25,1985年)所讨论的模型。特别地,它们包含了生物学上合理的可能性,即标本中包含处于正常和异常极端之间的细胞。我们发现,如果这些额外的细胞在正常和异常标本中差异出现,那么当细胞分类器对这些细胞具有不同的错误率时,标本分类可以变得显著更有效。

相似文献

2
The tradeoff of cell classifier error rates.细胞分类器错误率的权衡。
Cytometry. 1980 Sep;1(2):156-60. doi: 10.1002/cyto.990010211.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验