Suppr超能文献

随机异常细胞比例对样本分类器性能的影响。

Effect of random abnormal cell proportion on specimen classifier performance.

作者信息

Castleman K R, Price K H, White B S

机构信息

Perceptive Scientific Instruments, Inc. League City, Texas 77573.

出版信息

Cytometry. 1993;14(1):1-8. doi: 10.1002/cyto.990140103.

Abstract

A series of papers had analyzed a simplified model of an automated cytology prescreening configuration consisting of a two-class cell classifier followed by a two-class specimen classifier. This has shown, among other things, that the proportion (p) of abnormal cells on an abnormal specimen dictates the number (N) of cells that must be classified before the specimen can be classified with specified accuracy (Anal Quant Cytol, 2:117-122, 1980). It has also shown that if a system designed assuming one fixed value, po, encounters a specimen with a different fixed value, p, then the specimen classifier false negative rate will deviate significantly from the design value, increasing for p < po and vice versa (Cytometry, 2: 155-158, 1981). Using a Gaussian approximation, Timmers and Gelsema (Cytometry, 6:22-25, 1985) extended this to the case where p is a Beta-distributed random variable. They showed that N increases dramatically with the width (coefficient of variation) of the distribution of p. They also concluded that the randomness of p imposes a fundamental lower limit on the specimen false negative rate below which it is impossible to go, even with an error-free cell classifier. In this paper we also extend the basic model to cover the case of random p, but by using an asymptotic expansion (rather than the Gaussian approximation), to develop an expression for N. We show that the limit cited by Timmers and Gelsema is not real, but is actually an artifact of the breakdown of the Gaussian approximation.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

一系列论文分析了一种自动化细胞学预筛查配置的简化模型,该模型由一个两类细胞分类器和一个两类样本分类器组成。这表明,除其他外,异常样本上异常细胞的比例(p)决定了在样本能够以指定精度分类之前必须分类的细胞数量(《分析定量细胞病理学》,2:117 - 122,1980年)。还表明,如果一个系统按假设的一个固定值po设计,而遇到具有不同固定值p的样本,那么样本分类器的假阴性率将显著偏离设计值,当p < po时增加,反之亦然(《细胞计数》,2:155 - 158,1981年)。蒂默斯和盖尔塞马(《细胞计数》,6:22 - 25,1985年)使用高斯近似将此扩展到p是贝塔分布随机变量的情况。他们表明N随着p分布的宽度(变异系数)急剧增加。他们还得出结论,p的随机性对样本假阴性率施加了一个基本下限,即使使用无误差的细胞分类器也不可能低于这个下限。在本文中,我们也将基本模型扩展到涵盖随机p的情况,但通过使用渐近展开(而不是高斯近似)来推导N的表达式。我们表明蒂默斯和盖尔塞马引用的下限不是真实的,实际上是高斯近似失效的产物。(摘要截短于250字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验