Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
Department of Sciences and Technology, Universidade Aberta, Rua da Escola Politécnica, n.º 147, 1269-001, Lisboa, Portugal.
Sci Rep. 2022 Aug 11;12(1):13667. doi: 10.1038/s41598-022-18113-y.
The early diagnosis of neurodegenerative disorders is still an open issue despite the many efforts to address this problem. In particular, Alzheimer's disease (AD) remains undiagnosed for over a decade before the first symptoms. Optical coherence tomography (OCT) is now common and widely available and has been used to image the retina of AD patients and healthy controls to search for biomarkers of neurodegeneration. However, early diagnosis tools would need to rely on images of patients in early AD stages, which are not available due to late diagnosis. To shed light on how to overcome this obstacle, we resort to 57 wild-type mice and 57 triple-transgenic mouse model of AD to train a network with mice aged 3, 4, and 8 months and classify mice at the ages of 1, 2, and 12 months. To this end, we computed fundus images from OCT data and trained a convolution neural network (CNN) to classify those into the wild-type or transgenic group. CNN performance accuracy ranged from 80 to 88% for mice out of the training group's age, raising the possibility of diagnosing AD before the first symptoms through the non-invasive imaging of the retina.
尽管已经做了很多努力来解决这个问题,但神经退行性疾病的早期诊断仍然是一个悬而未决的问题。特别是阿尔茨海默病(AD),在出现第一个症状之前,通常会有超过十年的时间未被诊断出来。光学相干断层扫描(OCT)现在已经很常见,应用广泛,并已被用于对 AD 患者和健康对照者的视网膜进行成像,以寻找神经退行性变的生物标志物。然而,早期诊断工具将需要依赖于早期 AD 阶段患者的图像,但由于诊断较晚,这些图像无法获得。为了探讨如何克服这一障碍,我们利用 57 只野生型小鼠和 57 只 AD 三转基因小鼠模型,对 3、4 和 8 月龄的小鼠进行训练,并对 1、2 和 12 月龄的小鼠进行分类。为此,我们从 OCT 数据中计算了眼底图像,并训练了一个卷积神经网络(CNN),以将这些图像分为野生型或转基因组。对于不在训练组年龄范围内的小鼠,CNN 的性能准确率在 80%到 88%之间,这为通过视网膜的非侵入性成像在出现第一个症状之前诊断 AD 提供了可能性。