Suppr超能文献

基于卷积神经网络和迁移学习的彩色眼底图像自动青光眼分类

Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning.

作者信息

Gómez-Valverde Juan J, Antón Alfonso, Fatti Gianluca, Liefers Bart, Herranz Alejandra, Santos Andrés, Sánchez Clara I, Ledesma-Carbayo María J

机构信息

Biomedical Image Technologies Laboratory (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.

出版信息

Biomed Opt Express. 2019 Jan 25;10(2):892-913. doi: 10.1364/BOE.10.000892. eCollection 2019 Feb 1.

Abstract

Glaucoma detection in color fundus images is a challenging task that requires expertise and years of practice. In this study we exploited the application of different Convolutional Neural Networks (CNN) schemes to show the influence in the performance of relevant factors like the data set size, the architecture and the use of transfer learning vs newly defined architectures. We also compared the performance of the CNN based system with respect to human evaluators and explored the influence of the integration of images and data collected from the clinical history of the patients. We accomplished the best performance using a transfer learning scheme with VGG19 achieving an AUC of 0.94 with sensitivity and specificity ratios similar to the expert evaluators of the study. The experimental results using three different data sets with 2313 images indicate that this solution can be a valuable option for the design of a computer aid system for the detection of glaucoma in large-scale screening programs.

摘要

在彩色眼底图像中检测青光眼是一项具有挑战性的任务,需要专业知识和多年实践经验。在本研究中,我们利用不同的卷积神经网络(CNN)方案来展示数据集大小、架构以及迁移学习与新定义架构的使用等相关因素对性能的影响。我们还将基于CNN的系统性能与人类评估者进行了比较,并探讨了整合从患者临床病史中收集的图像和数据的影响。我们使用带有VGG19的迁移学习方案实现了最佳性能,AUC为0.94,灵敏度和特异性比率与该研究的专家评估者相似。使用包含2313张图像的三个不同数据集的实验结果表明,该解决方案对于大规模筛查项目中青光眼检测的计算机辅助系统设计可能是一个有价值的选择。

相似文献

1
Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning.
Biomed Opt Express. 2019 Jan 25;10(2):892-913. doi: 10.1364/BOE.10.000892. eCollection 2019 Feb 1.
2
CNNs for automatic glaucoma assessment using fundus images: an extensive validation.
Biomed Eng Online. 2019 Mar 20;18(1):29. doi: 10.1186/s12938-019-0649-y.
3
Effect of color information on the diagnostic performance of glaucoma in deep learning using few fundus images.
Int Ophthalmol. 2020 Nov;40(11):3013-3022. doi: 10.1007/s10792-020-01485-3. Epub 2020 Jun 27.
5
A novel retinal vessel detection approach based on multiple deep convolution neural networks.
Comput Methods Programs Biomed. 2018 Dec;167:43-48. doi: 10.1016/j.cmpb.2018.10.021. Epub 2018 Oct 30.
6
Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
PLoS One. 2020 May 14;15(5):e0233079. doi: 10.1371/journal.pone.0233079. eCollection 2020.
7
8
Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks.
JAMA Ophthalmol. 2017 Nov 1;135(11):1170-1176. doi: 10.1001/jamaophthalmol.2017.3782.
9
Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images.
IEEE Trans Med Imaging. 2016 May;35(5):1273-1284. doi: 10.1109/TMI.2016.2526689. Epub 2016 Feb 8.
10
A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection.
IEEE Trans Med Imaging. 2020 Feb;39(2):413-424. doi: 10.1109/TMI.2019.2927226. Epub 2019 Jul 8.

引用本文的文献

2
Artificial intelligence in ophthalmology: a bibliometric analysis of the 5-year trends in literature.
Front Med (Lausanne). 2025 Jul 1;12:1580583. doi: 10.3389/fmed.2025.1580583. eCollection 2025.
3
A deep learning model for diagnosis of inherited retinal diseases.
Sci Rep. 2025 Jul 2;15(1):22523. doi: 10.1038/s41598-025-04648-3.
4
Towards efficient glaucoma screening with modular convolution-involution cascade architecture.
PeerJ Comput Sci. 2025 Apr 21;11:e2844. doi: 10.7717/peerj-cs.2844. eCollection 2025.
5
From Image to Sequence: Exploring Vision Transformers for Optical Coherence Tomography Classification.
J Med Signals Sens. 2025 Jun 9;15:18. doi: 10.4103/jmss.jmss_58_24. eCollection 2025.
6
A hybrid multi model artificial intelligence approach for glaucoma screening using fundus images.
NPJ Digit Med. 2025 Feb 27;8(1):130. doi: 10.1038/s41746-025-01473-w.
7
Deep Learning in Glaucoma Detection and Progression Prediction: A Systematic Review and Meta-Analysis.
Biomedicines. 2025 Feb 10;13(2):420. doi: 10.3390/biomedicines13020420.
8
Rapid bacterial identification through volatile organic compound analysis and deep learning.
BMC Bioinformatics. 2024 Nov 6;25(1):347. doi: 10.1186/s12859-024-05967-4.
9
CA-ViT: Contour-Guided and Augmented Vision Transformers to Enhance Glaucoma Classification Using Fundus Images.
Bioengineering (Basel). 2024 Aug 31;11(9):887. doi: 10.3390/bioengineering11090887.
10
Cataract and glaucoma detection based on Transfer Learning using MobileNet.
Heliyon. 2024 Aug 24;10(17):e36759. doi: 10.1016/j.heliyon.2024.e36759. eCollection 2024 Sep 15.

本文引用的文献

2
3
Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image.
IEEE Trans Med Imaging. 2018 Nov;37(11):2493-2501. doi: 10.1109/TMI.2018.2837012. Epub 2018 May 15.
4
Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation.
IEEE Trans Med Imaging. 2018 Jul;37(7):1597-1605. doi: 10.1109/TMI.2018.2791488.
5
Predicting cancer outcomes from histology and genomics using convolutional networks.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979. doi: 10.1073/pnas.1717139115. Epub 2018 Mar 12.
6
Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2.
10
Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks.
JAMA Ophthalmol. 2017 Nov 1;135(11):1170-1176. doi: 10.1001/jamaophthalmol.2017.3782.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验