Gómez-Valverde Juan J, Antón Alfonso, Fatti Gianluca, Liefers Bart, Herranz Alejandra, Santos Andrés, Sánchez Clara I, Ledesma-Carbayo María J
Biomedical Image Technologies Laboratory (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
Biomed Opt Express. 2019 Jan 25;10(2):892-913. doi: 10.1364/BOE.10.000892. eCollection 2019 Feb 1.
Glaucoma detection in color fundus images is a challenging task that requires expertise and years of practice. In this study we exploited the application of different Convolutional Neural Networks (CNN) schemes to show the influence in the performance of relevant factors like the data set size, the architecture and the use of transfer learning vs newly defined architectures. We also compared the performance of the CNN based system with respect to human evaluators and explored the influence of the integration of images and data collected from the clinical history of the patients. We accomplished the best performance using a transfer learning scheme with VGG19 achieving an AUC of 0.94 with sensitivity and specificity ratios similar to the expert evaluators of the study. The experimental results using three different data sets with 2313 images indicate that this solution can be a valuable option for the design of a computer aid system for the detection of glaucoma in large-scale screening programs.
在彩色眼底图像中检测青光眼是一项具有挑战性的任务,需要专业知识和多年实践经验。在本研究中,我们利用不同的卷积神经网络(CNN)方案来展示数据集大小、架构以及迁移学习与新定义架构的使用等相关因素对性能的影响。我们还将基于CNN的系统性能与人类评估者进行了比较,并探讨了整合从患者临床病史中收集的图像和数据的影响。我们使用带有VGG19的迁移学习方案实现了最佳性能,AUC为0.94,灵敏度和特异性比率与该研究的专家评估者相似。使用包含2313张图像的三个不同数据集的实验结果表明,该解决方案对于大规模筛查项目中青光眼检测的计算机辅助系统设计可能是一个有价值的选择。