Department of Computer Science, Stanford University, Stanford, CA, USA.
Department of Biomedical Informatics, Harvard University, Boston, MA, USA.
Nat Biomed Eng. 2022 Dec;6(12):1346-1352. doi: 10.1038/s41551-022-00914-1. Epub 2022 Aug 11.
The development of medical applications of machine learning has required manual annotation of data, often by medical experts. Yet, the availability of large-scale unannotated data provides opportunities for the development of better machine-learning models. In this Review, we highlight self-supervised methods and models for use in medicine and healthcare, and discuss the advantages and limitations of their application to tasks involving electronic health records and datasets of medical images, bioelectrical signals, and sequences and structures of genes and proteins. We also discuss promising applications of self-supervised learning for the development of models leveraging multimodal datasets, and the challenges in collecting unbiased data for their training. Self-supervised learning may accelerate the development of medical artificial intelligence.
机器学习在医学上的应用发展需要人工标注数据,通常由医学专家来完成。然而,大规模未标注数据的出现为开发更好的机器学习模型提供了机会。在这篇综述中,我们重点介绍了医学和医疗保健领域中使用的自监督方法和模型,并讨论了它们在涉及电子健康记录以及医学图像、生物电信号以及基因和蛋白质序列和结构的数据集的任务中的应用的优缺点。我们还讨论了自监督学习在开发利用多模态数据集的模型方面的有前景的应用,以及在为其训练收集无偏数据方面的挑战。自监督学习可能会加速医学人工智能的发展。
Nat Biomed Eng. 2022-12
JMIR Mhealth Uhealth. 2025-1-29
IEEE Trans Pattern Anal Mach Intell. 2025-7
J Med Internet Res. 2025-3-10
J Med Internet Res. 2024-12-24
Med Image Anal. 2024-5
Imaging Neurosci (Camb). 2024-11-7
Commun Med (Lond). 2025-7-1
Proc IEEE Int Symp Biomed Imaging. 2023-4
Commun Med (Lond). 2021-7-14
Patterns (N Y). 2021-12-7
Nat Med. 2022-1
Artif Intell Med. 2021-9
Front Hum Neurosci. 2021-6-23
Med Image Comput Comput Assist Interv. 2020-10