文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Determining breast cancer biomarker status and associated morphological features using deep learning.

作者信息

Gamble Paul, Jaroensri Ronnachai, Wang Hongwu, Tan Fraser, Moran Melissa, Brown Trissia, Flament-Auvigne Isabelle, Rakha Emad A, Toss Michael, Dabbs David J, Regitnig Peter, Olson Niels, Wren James H, Robinson Carrie, Corrado Greg S, Peng Lily H, Liu Yun, Mermel Craig H, Steiner David F, Chen Po-Hsuan Cameron

机构信息

Google Health, Palo Alto, CA USA.

Google Health via Vituity, Emeryville, CA USA.

出版信息

Commun Med (Lond). 2021 Jul 14;1:14. doi: 10.1038/s43856-021-00013-3. eCollection 2021.


DOI:10.1038/s43856-021-00013-3
PMID:35602213
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9037318/
Abstract

BACKGROUND: Breast cancer management depends on biomarkers including estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (ER/PR/HER2). Though existing scoring systems are widely used and well-validated, they can involve costly preparation and variable interpretation. Additionally, discordances between histology and expected biomarker findings can prompt repeat testing to address biological, interpretative, or technical reasons for unexpected results. METHODS: We developed three independent deep learning systems (DLS) to directly predict ER/PR/HER2 status for both focal tissue regions (patches) and slides using hematoxylin-and-eosin-stained (H&E) images as input. Models were trained and evaluated using pathologist annotated slides from three data sources. Areas under the receiver operator characteristic curve (AUCs) were calculated for test sets at both a patch-level (>135 million patches, 181 slides) and slide-level ( = 3274 slides, 1249 cases, 37 sites). Interpretability analyses were performed using Testing with Concept Activation Vectors (TCAV), saliency analysis, and pathologist review of clustered patches. RESULTS: The patch-level AUCs are 0.939 (95%CI 0.936-0.941), 0.938 (0.936-0.940), and 0.808 (0.802-0.813) for ER/PR/HER2, respectively. At the slide level, AUCs are 0.86 (95%CI 0.84-0.87), 0.75 (0.73-0.77), and 0.60 (0.56-0.64) for ER/PR/HER2, respectively. Interpretability analyses show known biomarker-histomorphology associations including associations of low-grade and lobular histology with ER/PR positivity, and increased inflammatory infiltrates with triple-negative staining. CONCLUSIONS: This study presents rapid breast cancer biomarker estimation from routine H&E slides and builds on prior advances by prioritizing interpretability of computationally learned features in the context of existing pathological knowledge.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/24c769e1b5b4/43856_2021_13_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/5e9a2e4256f7/43856_2021_13_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/cdf1a85239ba/43856_2021_13_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/f3abafff03f8/43856_2021_13_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/e8b44669252a/43856_2021_13_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/fea5b5e5fc9f/43856_2021_13_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/24c769e1b5b4/43856_2021_13_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/5e9a2e4256f7/43856_2021_13_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/cdf1a85239ba/43856_2021_13_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/f3abafff03f8/43856_2021_13_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/e8b44669252a/43856_2021_13_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/fea5b5e5fc9f/43856_2021_13_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/9037318/24c769e1b5b4/43856_2021_13_Fig6_HTML.jpg

相似文献

[1]
Determining breast cancer biomarker status and associated morphological features using deep learning.

Commun Med (Lond). 2021-7-14

[2]
Data-Efficient Computational Pathology Platform for Faster and Cheaper Breast Cancer Subtype Identifications: Development of a Deep Learning Model.

JMIR Cancer. 2023-9-5

[3]
Deep learned tissue "fingerprints" classify breast cancers by ER/PR/Her2 status from H&E images.

Sci Rep. 2020-4-29

[4]
Artificial Intelligence Algorithms to Assess Hormonal Status From Tissue Microarrays in Patients With Breast Cancer.

JAMA Netw Open. 2019-7-3

[5]
Prediction of clinicopathological features, multi-omics events and prognosis based on digital pathology and deep learning in HR/HER2 breast cancer.

J Thorac Dis. 2023-5-30

[6]
Deep Learning to Estimate Human Epidermal Growth Factor Receptor 2 Status from Hematoxylin and Eosin-Stained Breast Tissue Images.

J Pathol Inform. 2020-7-24

[7]
Immunohistochemical Expression Of Matrix Metalloproteinase-1 (MMP-1) in Different Types Of Breast Carcinoma And Its Comparison With ER/PER and HER2/neu.

J Ayub Med Coll Abbottabad. 2022

[8]
Concordance of breast cancer biomarker status between routine immunohistochemistry/in situ hybridization and Oncotype DX qRT-PCR with investigation of discordance, a study of 591 cases.

Hum Pathol. 2020-10

[9]
Explainable breast cancer molecular expression prediction using multi-task deep-learning based on 3D whole breast ultrasound.

Insights Imaging. 2024-9-19

[10]
Real-world data on discordance between estrogen, progesterone, and HER2 receptor expression on diagnostic tumor biopsy versus tumor resection material.

Breast Cancer Res Treat. 2019-2-13

引用本文的文献

[1]
Educational case: Estrogen-receptor positive breast cancer: Diagnosis, response to therapy, and prognosis.

Acad Pathol. 2025-8-12

[2]
Predicting ROS1 and ALK fusions in NSCLC from H&E slides with a two-step vision transformer approach.

NPJ Precis Oncol. 2025-7-30

[3]
Deep Learning on Histopathological Images to Predict Breast Cancer Recurrence Risk and Chemotherapy Benefit.

medRxiv. 2025-5-16

[4]
Epidemiological and molecular profile of breast cancer: a retrospective study in Casablanca, Morocco.

Pan Afr Med J. 2025-4-22

[5]
H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking.

NPJ Digit Med. 2025-7-2

[6]
Mechanism and Predictive Role of NUB1 Protein in Oestrogen Receptor Pathway of FEC-Treated Breast Cancer Patients.

Biomedicines. 2025-5-27

[7]
Predicting estrogen receptor status from HE-stained breast cancer slides using artificial intelligence.

Front Med (Lausanne). 2025-6-9

[8]
Advanced Deep Learning Approaches in Detection Technologies for Comprehensive Breast Cancer Assessment Based on WSIs: A Systematic Literature Review.

Diagnostics (Basel). 2025-4-30

[9]
Corr-A-Net: Interpretable Attention-Based Correlated Feature Learning framework for predicting of HER2 Score in Breast Cancer from H&E Images.

medRxiv. 2025-4-25

[10]
Characterisation of HER2-Driven Morphometric Signature in Breast Cancer and Prediction of Risk of Recurrence.

Cancer Med. 2025-4

本文引用的文献

[1]
Interpretable survival prediction for colorectal cancer using deep learning.

NPJ Digit Med. 2021-4-19

[2]
Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains.

Nat Commun. 2020-11-16

[3]
Visual histological assessment of morphological features reflects the underlying molecular profile in invasive breast cancer: a morphomolecular study.

Histopathology. 2020-10

[4]
Deep learned tissue "fingerprints" classify breast cancers by ER/PR/Her2 status from H&E images.

Sci Rep. 2020-4-29

[5]
Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update.

J Clin Oncol. 2020-4-20

[6]
Artificial Intelligence Algorithms to Assess Hormonal Status From Tissue Microarrays in Patients With Breast Cancer.

JAMA Netw Open. 2019-7-3

[7]
Similar image search for histopathology: SMILY.

NPJ Digit Med. 2019-6-21

[8]
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.

Nat Med. 2019-6-3

[9]
Breast Cancer Treatment: A Review.

JAMA. 2019-1-22

[10]
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning.

Nat Med. 2018-9-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索