Suppr超能文献

一个新的[具体对象]的全基因组规模代谢模型及其应用。 (原文中“of”后面缺少具体内容)

A new genome-scale metabolic model of and its application.

作者信息

Zhang Yu, Cai Jingyi, Shang Xiuling, Wang Bo, Liu Shuwen, Chai Xin, Tan Tianwei, Zhang Yun, Wen Tingyi

机构信息

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China.

University of Chinese Academy of Sciences, Beijing, 100049 China.

出版信息

Biotechnol Biofuels. 2017 Jun 30;10:169. doi: 10.1186/s13068-017-0856-3. eCollection 2017.

Abstract

BACKGROUND

is an important platform organism for industrial biotechnology to produce amino acids, organic acids, bioplastic monomers, and biofuels. The metabolic flexibility, broad substrate spectrum, and fermentative robustness of make this organism an ideal cell factory to manufacture desired products. With increases in gene function, transport system, and metabolic profile information under certain conditions, developing a comprehensive genome-scale metabolic model (GEM) of ATCC13032 is desired to improve prediction accuracy, elucidate cellular metabolism, and guide metabolic engineering.

RESULTS

Here, we constructed a new GEM for ATCC13032, CW773, consisting of 773 genes, 950 metabolites, and 1207 reactions. Compared to the previous model, CW773 supplemented 496 gene-protein-reaction associations, refined five lumped reactions, balanced the mass and charge, and constrained the directionality of reactions. The simulated growth rates of cultivated on seven different carbon sources using CW773 were consistent with experimental values. Pearson's correlation coefficient between the CW773-simulated and experimental fluxes was 0.99, suggesting that CW773 provided an accurate intracellular flux distribution of the wild-type strain growing on glucose. Furthermore, genetic interventions for overproducing l-lysine, 1,2-propanediol and isobutanol simulated using OptForce were in accordance with reported experimental results, indicating the practicability of CW773 for the design of metabolic networks to overproduce desired products. In vivo genetic modifications of CW773-predicted targets resulted in the de novo generation of an l-proline-overproducing strain. In fed-batch culture, the engineered strain produced 66.43 g/L l-proline in 60 h with a yield of 0.26 g/g (l-proline/glucose) and a productivity of 1.11 g/L/h. To our knowledge, this is the highest titer and productivity reported for l-proline production using glucose as the carbon resource in a minimal medium.

CONCLUSIONS

Our developed CW773 serves as a high-quality platform for model-guided strain design to produce industrial bioproducts of interest. This new GEM will be a successful multidisciplinary tool and will make valuable contributions to metabolic engineering in academia and industry.

摘要

背景

是工业生物技术生产氨基酸、有机酸、生物塑料单体和生物燃料的重要模式生物。其代谢灵活性、广泛的底物谱和发酵稳健性使其成为制造所需产品的理想细胞工厂。随着特定条件下基因功能、转运系统和代谢谱信息的增加,构建一个全面的ATCC13032基因组规模代谢模型(GEM)对于提高预测准确性、阐明细胞代谢和指导代谢工程是很有必要的。

结果

在此,我们构建了一个新的ATCC13032的GEM,CW773,它由773个基因、950个代谢物和1207个反应组成。与之前的模型相比,CW773补充了496个基因-蛋白质-反应关联,优化了5个集总反应,平衡了质量和电荷,并限制了反应的方向性。使用CW773模拟在七种不同碳源上培养的 的生长速率与实验值一致。CW773模拟通量与实验通量之间的皮尔逊相关系数为0.99,表明CW773提供了在葡萄糖上生长的野生型菌株准确的细胞内通量分布。此外,使用OptForce模拟的过量生产L-赖氨酸、1,2-丙二醇和异丁醇的基因干预与报道的实验结果一致,表明CW773在设计代谢网络以过量生产所需产品方面的实用性。对CW773预测靶点的体内基因改造导致了一株从头产生的过量生产L-脯氨酸的菌株。在分批补料培养中,工程化的 菌株在60小时内产生了66.43 g/L的L-脯氨酸,产率为0.26 g/g(L-脯氨酸/葡萄糖),生产力为1.11 g/L/h。据我们所知,这是以葡萄糖为碳源在基本培养基中生产L-脯氨酸报道的最高滴度和生产力。

结论

我们开发的CW773作为一个高质量的平台,用于模型指导的菌株设计,以生产感兴趣的工业生物产品。这个新的GEM将是一个成功的多学科工具,并将为学术界和工业界的代谢工程做出有价值的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验