LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
Dr B C, Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713212, WB, India.
Molecules. 2022 Jul 31;27(15):4896. doi: 10.3390/molecules27154896.
Deep eutectic solvents (DES) are an important class of green solvents that have been developed as an alternative to toxic solvents. However, the large-scale industrial application of DESs requires fine-tuning their physicochemical properties. Among others, surface tension is one of such properties that have to be considered while designing novel DESs. In this work, we present the results of a detailed evaluation of Quantitative Structure-Property Relationships (QSPR) modeling efforts designed to predict the surface tension of DESs, following the Organization for Economic Co-operation and Development (OECD) guidelines. The data set used comprises a large number of structurally diverse binary DESs and the models were built systematically through rigorous validation methods, including 'mixtures-out'- and 'compounds-out'-based data splitting. The most predictive individual QSPR model found is shown to be statistically robust, besides providing valuable information about the structural and physicochemical features responsible for the surface tension of DESs. Furthermore, the intelligent consensus prediction strategy applied to multiple predictive models led to consensus models with similar statistical robustness to the individual QSPR model. The benefits of the present work stand out also from its reproducibility since it relies on fully specified computational procedures and on publicly available tools. Finally, our results not only guide the future design and screening of novel DESs with a desirable surface tension but also lays out strategies for efficiently setting up silico-based models for binary mixtures.
深共熔溶剂 (DES) 是一类重要的绿色溶剂,已被开发为替代有毒溶剂的替代品。然而,DES 的大规模工业应用需要微调其物理化学性质。其中,表面张力是在设计新型 DES 时必须考虑的性质之一。在这项工作中,我们根据经济合作与发展组织 (OECD) 的指南,介绍了详细评估定量结构-性质关系 (QSPR) 建模工作以预测 DES 表面张力的结果。所使用的数据集包含大量结构多样的二元 DES,并且通过严格的验证方法系统地构建了模型,包括基于“混合物外”和“化合物外”的数据拆分。所发现的最具预测性的单个 QSPR 模型不仅具有统计学上的稳健性,而且还提供了有关 DES 表面张力的结构和物理化学特征的有价值信息。此外,应用于多个预测模型的智能共识预测策略导致与单个 QSPR 模型具有相似统计稳健性的共识模型。本工作的另一个优点是其可重复性,因为它依赖于完全指定的计算程序和公开可用的工具。最后,我们的结果不仅指导了具有理想表面张力的新型 DES 的未来设计和筛选,而且还为基于计算机的二元混合物模型的高效设置制定了策略。