Suppr超能文献

用于高灵敏度太赫兹折射率传感的可调谐最优双频超材料吸收器

Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Index Sensing.

作者信息

Karthikeyan Madurakavi, Jayabala Pradeep, Ramachandran Sitharthan, Dhanabalan Shanmuga Sundar, Sivanesan Thamizharasan, Ponnusamy Manimaran

机构信息

Department of Communication, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India.

Department of Electronics and Communication Engineering, Sri Manakula Vinayagar Engineering College, Puducherry 605107, India.

出版信息

Nanomaterials (Basel). 2022 Aug 5;12(15):2693. doi: 10.3390/nano12152693.

Abstract

We present a simple dual band absorber design and investigate it in the terahertz (THz) region. The proposed absorber works in dual operating bands at 5.1 THz and 11.7 THz. By adjusting the graphene chemical potential, the proposed absorber has the controllability of the resonance frequency to have perfect absorption at various frequencies. The graphene surface plasmon resonance results in sharp and narrow resonance absorption peaks. For incident angles up to 8°, the structure possesses near-unity absorption. The proposed sensor absorber's functionality is evaluated using sensing medium with various refractive indices. The proposed sensor is simulated for glucose detection and a maximum sensitivity of 4.72 THz/RIU is observed. It has a maximum figure of merit (FOM) and Quality factor (Q) value of 14 and 32.49, respectively. The proposed optimal absorber can be used to identify malaria virus and cancer cells in blood. Hence, the proposed plasmonic sensor is a serious contender for biomedical uses in the diagnosis of bacterial infections, cancer, malaria, and other diseases.

摘要

我们提出了一种简单的双频吸收器设计,并在太赫兹(THz)波段对其进行了研究。所提出的吸收器在5.1太赫兹和11.7太赫兹的双工作频段工作。通过调整石墨烯的化学势,所提出的吸收器具有共振频率的可控性,能够在不同频率下实现完美吸收。石墨烯表面等离子体共振导致尖锐且狭窄的共振吸收峰。对于高达8°的入射角,该结构具有近乎单位的吸收率。使用具有不同折射率的传感介质对所提出的传感器吸收器的功能进行了评估。对所提出的传感器进行了葡萄糖检测模拟,观察到最大灵敏度为4.72太赫兹/折射率单位(THz/RIU)。它的最大品质因数(FOM)和品质因子(Q)值分别为14和32.49。所提出的最佳吸收器可用于识别血液中的疟疾病毒和癌细胞。因此,所提出的等离子体传感器是用于细菌感染、癌症、疟疾和其他疾病诊断的生物医学应用的有力竞争者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73f9/9370750/8601b872e2c4/nanomaterials-12-02693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验