Suppr超能文献

利用微流控芯片中的微观振动实现高分辨率多量程颗粒分离。

High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip.

机构信息

School of Mechanical Engineering, Xi'an Jiao Tong University, Xian 710049, China.

出版信息

Lab Chip. 2017 Jul 11;17(14):2443-2450. doi: 10.1039/c7lc00484b.

Abstract

An optofluidic chip is demonstrated in experiments for high-resolution and multi-range particle separation through the optically-induced microscopic vibration effect, where nanoparticles are trapped in loosely overdamped optical potential wells created with combined optical and fluidic constraints. It is the first demonstration of separating single nanoparticles with diameters ranging from 60 to 100 nm with a resolution of 10 nm. Nanoparticles vibrate with an amplitude of 3-7 μm in the loosely overdamped potential wells in the microchannel. The proposed optofluidic device is capable of high-resolution particle separation at both nanoscale and microscale without reconfiguring the device. The separation of bacteria from other larger cells is accomplished using the same chip and operation conditions. The unique trapping mechanism and the superb performance in high-resolution and multi-range particle separation of the proposed optofluidic chip promise great potential for a diverse range of biomedical applications.

摘要

实验演示了一种光流控芯片,通过光诱导的微观振动效应实现了高分辨率和多范围的粒子分离,其中纳米颗粒被捕获在由光学和流场约束共同产生的、具有轻微过阻尼的光学势阱中。这是首次演示了使用分辨率为 10nm 的光学和流场约束,分离直径为 60nm 到 100nm 的单颗粒。纳米颗粒在微通道中轻微过阻尼的势阱中以 3-7μm 的振幅振动。所提出的光流控器件能够在纳米级和微米级实现高分辨率的粒子分离,而无需重新配置器件。使用相同的芯片和操作条件可以实现从其他较大细胞中分离细菌。该光流控芯片独特的捕获机制和在高分辨率和多范围粒子分离方面的卓越性能,有望在各种生物医学应用中得到广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验