Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
J Colloid Interface Sci. 2019 Feb 15;536:235-244. doi: 10.1016/j.jcis.2018.10.060. Epub 2018 Oct 20.
Unique nanostructure, high electrical conductivity, satisfactory energy density, and extraordinary cycling stability are important evaluation criteria for high-efficient energy storage devices. Herein, FeO nanospheres are successfully in situ decorated on graphene nanosheets through an environmentally benign and facile solvothermal procedure. When utilized as an electrode for supercapacitor, the graphene/FeO nanocomposite exhibits a notably enhanced specific capacity (268 F·g at 2 mV·s) and remarkable cycling performance with 98.9% capacity retention after 10,000 cycles. Furthermore, the fabricated graphene/MnO//graphene/FeO asymmetric supercapacitor device displays a desirable energy density (87.6 Wh·kg) and superior cycling stability (93.1% capacity retention after 10,000 cycles).
独特的纳米结构、高电导率、令人满意的能量密度和非凡的循环稳定性是高效储能设备的重要评价标准。在此,通过一种环境友好且简便的溶剂热法,成功地将 FeO 纳米球原位修饰在石墨烯纳米片上。当将其用作超级电容器的电极时,石墨烯/FeO 纳米复合材料表现出显著增强的比容量(在 2 mV·s 下为 268 F·g)和出色的循环性能,在 10000 次循环后容量保持率为 98.9%。此外,所制备的石墨烯/MnO//石墨烯/FeO 非对称超级电容器器件具有理想的能量密度(87.6 Wh·kg)和卓越的循环稳定性(在 10000 次循环后容量保持率为 93.1%)。