文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications.

作者信息

Testa-Anta Martín, Ramos-Docampo Miguel A, Comesaña-Hermo Miguel, Rivas-Murias Beatriz, Salgueiriño Verónica

机构信息

Departamento de Física Aplicada, Universidade de Vigo 36310 Vigo Spain

Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086 75013 Paris France.

出版信息

Nanoscale Adv. 2019 Apr 23;1(6):2086-2103. doi: 10.1039/c9na00064j. eCollection 2019 Jun 11.


DOI:10.1039/c9na00064j
PMID:36131987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9418671/
Abstract

Iron oxide nanocrystals have become a versatile tool in biomedicine because of their low cytotoxicity while offering a wide range of tuneable magnetic properties that may be implemented in magnetic separation, drug and heat delivery and bioimaging. These capabilities rely on the unique magnetic features obtained when combining different iron oxide phases, so that an important portfolio of magnetic properties can be attained by the rational design of multicomponent nanocrystals. In this context, Raman spectroscopy is an invaluable and fast-performance tool to gain insight into the different phases forming part of the nanocrystals to be used, allowing correlation of the magnetic properties with the envisaged bio-related applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/18495452e9ed/c9na00064j-p5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/e637f9e1f962/c9na00064j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/beb2d7f90452/c9na00064j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/287994d676d5/c9na00064j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/1c2fedacecea/c9na00064j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/aa4af09f5e9e/c9na00064j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/395a8e4691f0/c9na00064j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/bf9239ad7549/c9na00064j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/342c2eda5d26/c9na00064j-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/02ee8afcd38f/c9na00064j-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/45d4f9b3ea1b/c9na00064j-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/41026cbc62b1/c9na00064j-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/18495452e9ed/c9na00064j-p5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/e637f9e1f962/c9na00064j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/beb2d7f90452/c9na00064j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/287994d676d5/c9na00064j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/1c2fedacecea/c9na00064j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/aa4af09f5e9e/c9na00064j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/395a8e4691f0/c9na00064j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/bf9239ad7549/c9na00064j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/342c2eda5d26/c9na00064j-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/02ee8afcd38f/c9na00064j-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/45d4f9b3ea1b/c9na00064j-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/41026cbc62b1/c9na00064j-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b472/9418671/18495452e9ed/c9na00064j-p5.jpg

相似文献

[1]
Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications.

Nanoscale Adv. 2019-4-23

[2]
Shaping iron oxide nanocrystals for magnetic separation applications.

Nanoscale. 2018-11-8

[3]
Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications.

Nanomaterials (Basel). 2012-5-7

[4]
Size- and composition-dependent radio frequency magnetic permeability of iron oxide nanocrystals.

ACS Nano. 2014-11-19

[5]
Solvothermally Driven Mn Doping and Clustering of Iron Oxide Nanoparticles for Heat Delivery Applications.

Chemistry. 2016-5-4

[6]
[Research progress on application of gold magnetic nanocomposite in biomedicine].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2014-4

[7]
Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications.

Sci Rep. 2013-10-21

[8]
Gas-bubble effects on the formation of colloidal iron oxide nanocrystals.

J Am Chem Soc. 2011-7-22

[9]
Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.

Acc Chem Res. 2016-12-8

[10]
Iron oxide nanoparticles based magnetic luminescent quantum dots (MQDs) synthesis and biomedical/biological applications: A review.

Mater Sci Eng C Mater Biol Appl. 2021-1

引用本文的文献

[1]
Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study.

Polymers (Basel). 2025-6-19

[2]
Synthesis and Characterization of λ-Carrageenan Oligosaccharide-Based Nanoparticles: Applications in MRI and In Vivo Biodistribution Studies.

Biomacromolecules. 2025-3-10

[3]
Biofunctionalization of Magneto-Plasmonic FeO@SiO-NH-Au Heterostructures with the Cellulase from .

Molecules. 2025-2-6

[4]
Low-Temperature Exsolution of Rh from Mixed ZnFeRh Oxides toward Stable and Selective Catalysts in Liquid-Phase Hydroformylation.

J Am Chem Soc. 2025-2-19

[5]
Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment.

Chemosphere. 2024-9

[6]
Geometry and Surface Area Optimization in Iron Oxide Nanoparticles for Enhanced Magnetic Properties.

ACS Omega. 2024-7-18

[7]
Organic Molecular Glues to Design Three-Dimensional Cubic Nano-assemblies of Magnetic Nanoparticles.

Chem Mater. 2024-7-11

[8]
Magnetically Induced Thermal Effects on Tobacco Mosaic Virus-Based Nanocomposites for a Programmed Disassembly of Protein Cages.

ACS Appl Bio Mater. 2024-7-15

[9]
Iron Oxide-Doped Carbon Nanoparticles Stabilised with Functionally Modified Hyperbranched Polyglycerol for Cd Sensing and Photodynamic Antibacterial Therapeutic Applications.

J Fluoresc. 2024-6-21

[10]
Evaluation of Antiproliferative Properties of CoMnZn-FeO Ferrite Nanoparticles in Colorectal Cancer Cells.

Pharmaceuticals (Basel). 2024-3-1

本文引用的文献

[1]
Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T magnetic resonance imaging (MRI).

J Mater Chem B. 2015-7-14

[2]
Synergy effects of magnetic silica nanostructures for drug delivery applications.

J Mater Chem B. 2014-5-14

[3]
Clusters of Magnetite-Maghemite Nanocrystals with a Chemically-Tailored Average Diameter.

J Nanosci Nanotechnol. 2019-8-1

[4]
Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material.

Nano Lett. 2019-1-25

[5]
Shaping iron oxide nanocrystals for magnetic separation applications.

Nanoscale. 2018-11-8

[6]
Atomic-Scale Determination of Cation Inversion in Spinel-Based Oxide Nanoparticles.

Nano Lett. 2018-9-12

[7]
A Magnetic-Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclast-Targeted Inhibition and Heterogeneous Nanocatalysis.

Adv Mater. 2018-5-7

[8]
Microwave Absorption and the Magnetic Hyperthermia Applications of LiZnCoFeO Nanoparticles in Multiwalled Carbon Nanotube Matrix.

ACS Appl Mater Interfaces. 2017-11-13

[9]
Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core-Shell Structures upon Nanoemulsion Fusion.

Langmuir. 2017-9-22

[10]
Double-Fueled Janus Swimmers with Magnetotactic Behavior.

ACS Nano. 2017-3-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索