Suppr超能文献

从泰国言语流畅性评估中选择预测轻度认知障碍最重要的特征。

Selecting the Most Important Features for Predicting Mild Cognitive Impairment from Thai Verbal Fluency Assessments.

机构信息

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

出版信息

Sensors (Basel). 2022 Aug 3;22(15):5813. doi: 10.3390/s22155813.

Abstract

Mild cognitive impairment (MCI) is an early stage of cognitive decline or memory loss, commonly found among the elderly. A phonemic verbal fluency (PVF) task is a standard cognitive test that participants are asked to produce words starting with given letters, such as "F" in English and "ก" /k/ in Thai. With state-of-the-art machine learning techniques, features extracted from the PVF data have been widely used to detect MCI. The PVF features, including acoustic features, semantic features, and word grouping, have been studied in many languages but not Thai. However, applying the same PVF feature extraction methods used in English to Thai yields unpleasant results due to different language characteristics. This study performs analytical feature extraction on Thai PVF data to classify MCI patients. In particular, we propose novel approaches to extract features based on phonemic clustering (ability to cluster words by phonemes) and switching (ability to shift between clusters) for the Thai PVF data. The comparison results of the three classifiers revealed that the support vector machine performed the best with an area under the receiver operating characteristic curve (AUC) of 0.733 (N = 100). Furthermore, our implemented guidelines extracted efficient features, which support the machine learning models regarding MCI detection on Thai PVF data.

摘要

轻度认知障碍 (MCI) 是认知能力下降或记忆力减退的早期阶段,常见于老年人。音素流畅性测试 (PVF) 是一种标准的认知测试,要求参与者用给定的字母开头来生成单词,例如英语中的“F”和泰语中的“ก”/k/。通过最先进的机器学习技术,从 PVF 数据中提取的特征已被广泛用于检测 MCI。PVF 特征包括声学特征、语义特征和单词分组,已在许多语言中进行了研究,但在泰语中尚未进行研究。然而,由于语言特点的不同,将英语中使用的相同 PVF 特征提取方法应用于泰语会产生不理想的结果。本研究对泰语 PVF 数据进行了分析特征提取,以对 MCI 患者进行分类。特别是,我们提出了基于音素聚类(通过音素来聚类单词的能力)和切换(在聚类之间切换的能力)的新方法来提取泰语 PVF 数据的特征。三种分类器的比较结果表明,支持向量机的表现最佳,接收器操作特征曲线下的面积 (AUC) 为 0.733(N=100)。此外,我们实施的指南提取了有效的特征,支持机器学习模型对泰语 PVF 数据进行 MCI 检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/663e/9370961/8e86a6d785e1/sensors-22-05813-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验