Suppr超能文献

设计一种有效的语义流畅性测试,以通过机器学习进行早期 MCI 诊断。

Designing an effective semantic fluency test for early MCI diagnosis with machine learning.

机构信息

Universidad Nacional de Educación a Distancia, Madrid, 28040, Comunidad Autónoma de Madrid, Spain(1).

出版信息

Comput Biol Med. 2024 Sep;180:108955. doi: 10.1016/j.compbiomed.2024.108955. Epub 2024 Aug 16.

Abstract

Semantic fluency tests are one of the key tests used in batteries for the early detection of Mild Cognitive Impairment (MCI) as the impairment in speech and semantic memory are among the first symptoms, attracting the attention of a large number of studies. Several new semantic categories and variables capable of providing complementary information of clinical interest have been proposed to increase their effectiveness. However, this also extends the time required to complete all tests and get the overall diagnosis. Therefore, there is a need to reduce the number of tests in the batteries and thus the time spent on them while maintaining or increasing their effectiveness. This study used machine learning methods to determine the smallest and most efficient combination of semantic categories and variables to achieve this goal. We utilized a database containing 423 assessments from 141 subjects, with each subject having undergone three assessments spaced approximately one year apart. Subjects were categorized into three diagnostic groups: Healthy (if diagnosed as healthy in all three assessments), stable MCI (consistently diagnosed as MCI), and heterogeneous MCI (when exhibiting alternations between healthy and MCI diagnoses across assessments). We obtained that the most efficient combination to distinguish between these categories of semantic fluency tests included the animals and clothes semantic categories with the variables corrects, switching, clustering, and total clusters. This combination is ideal for scenarios that require a balance between time efficiency and diagnosis capability, such as population-based screenings.

摘要

语义流畅性测试是用于早期检测轻度认知障碍 (MCI) 的测试组合中的关键测试之一,因为言语和语义记忆损伤是最早出现的症状之一,引起了大量研究的关注。已经提出了一些新的语义类别和变量,能够提供具有临床意义的补充信息,以提高其有效性。然而,这也延长了完成所有测试和获得整体诊断所需的时间。因此,需要减少测试组合中的测试数量,从而减少完成这些测试所需的时间,同时保持或提高其有效性。本研究使用机器学习方法来确定实现这一目标的最小和最有效的语义类别和变量组合。我们利用了一个包含 141 名受试者的 423 项评估的数据库,每个受试者进行了三次评估,间隔大约一年。受试者被分为三个诊断组:健康(如果在所有三次评估中均被诊断为健康)、稳定的 MCI(持续被诊断为 MCI)和异质的 MCI(在评估过程中,健康和 MCI 的诊断交替出现)。我们发现,用于区分这些语义流畅性测试类别的最有效组合包括动物和服装语义类别,以及正确、转换、聚类和总聚类变量。这种组合非常适合需要在时间效率和诊断能力之间取得平衡的情况,例如基于人群的筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验