Suppr超能文献

健康与脑癌中的神经元-神经胶质细胞相互作用

Neuron-Glial Interactions in Health and Brain Cancer.

作者信息

Pan Yuan, Monje Michelle

机构信息

Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.

Department of Neurology, Stanford University, CA, 94305, USA.

出版信息

Adv Biol (Weinh). 2022 Sep;6(9):e2200122. doi: 10.1002/adbi.202200122. Epub 2022 Aug 11.

Abstract

Brain tumors are devastating diseases of the central nervous system. Brain tumor pathogenesis depends on both tumor-intrinsic oncogenic programs and extrinsic microenvironmental factors, including neurons and glial cells. Glial cells (oligodendrocytes, astrocytes, and microglia) make up half of the cells in the brain, and interact with neurons to modulate neurodevelopment and plasticity. Many brain tumor cells exhibit transcriptomic profiles similar to macroglial cells (oligodendrocytes and astrocytes) and their progenitors, making them likely to subvert existing neuron-glial interactions to support tumor pathogenesis. For example, oligodendrocyte precursor cells, a putative glioma cell of origin, can form bona fide synapses with neurons. Such synapses are recently identified in gliomas and drive glioma pathophysiology, underscoring how brain tumor cells can take advantage of neuron-glial interactions to support cancer progression. In this review, it is briefly summarized how neurons and their activity normally interact with glial cells and glial progenitors, and it is discussed how brain tumor cells utilize neuron-glial interactions to support tumor initiation and progression. Unresolved questions on these topics and potential avenues to therapeutically target neuron-glia-cancer interactions in the brain are also pointed out.

摘要

脑肿瘤是中枢神经系统的毁灭性疾病。脑肿瘤的发病机制取决于肿瘤内在的致癌程序和外在的微环境因素,包括神经元和神经胶质细胞。神经胶质细胞(少突胶质细胞、星形胶质细胞和小胶质细胞)占大脑细胞的一半,并与神经元相互作用以调节神经发育和可塑性。许多脑肿瘤细胞表现出与大胶质细胞(少突胶质细胞和星形胶质细胞)及其祖细胞相似的转录组特征,这使得它们有可能颠覆现有的神经元 - 神经胶质相互作用以支持肿瘤发病机制。例如,少突胶质前体细胞,一种假定的胶质瘤起源细胞,可以与神经元形成真正的突触。这种突触最近在胶质瘤中被发现,并驱动胶质瘤的病理生理学,突出了脑肿瘤细胞如何利用神经元 - 神经胶质相互作用来支持癌症进展。在这篇综述中,简要总结了神经元及其活动通常如何与神经胶质细胞和神经胶质祖细胞相互作用,并讨论了脑肿瘤细胞如何利用神经元 - 神经胶质相互作用来支持肿瘤的起始和进展。还指出了关于这些主题的未解决问题以及在大脑中治疗性靶向神经元 - 神经胶质 - 癌症相互作用的潜在途径。

相似文献

1
Neuron-Glial Interactions in Health and Brain Cancer.
Adv Biol (Weinh). 2022 Sep;6(9):e2200122. doi: 10.1002/adbi.202200122. Epub 2022 Aug 11.
2
Intrinsic protective mechanisms of the neuron-glia network against glioma invasion.
J Clin Neurosci. 2016 Apr;26:19-25. doi: 10.1016/j.jocn.2015.07.024. Epub 2016 Jan 4.
4
Brain Tumor Networks in Diffuse Glioma.
Neurotherapeutics. 2022 Oct;19(6):1832-1843. doi: 10.1007/s13311-022-01320-w. Epub 2022 Nov 10.
5
Neuron-Glia Interactions in Neurodevelopmental Disorders.
Cells. 2020 Sep 27;9(10):2176. doi: 10.3390/cells9102176.
6
Multifaceted interactions between cancer cells and glial cells in brain metastasis.
Cancer Sci. 2024 Sep;115(9):2871-2878. doi: 10.1111/cas.16241. Epub 2024 Jul 11.
7
In vitro identification and functional characterization of glial precursor cells in human gliomas.
Neuropathol Appl Neurobiol. 2006 Apr;32(2):189-202. doi: 10.1111/j.1365-2990.2006.00740.x.
9
Neuron-glia interactions as therapeutic targets in neurodegeneration.
J Alzheimers Dis. 2009;16(3):485-502. doi: 10.3233/JAD-2009-0988.
10
Gliomas Interact with Non-glioma Brain Cells via Extracellular Vesicles.
Cell Rep. 2020 Feb 25;30(8):2489-2500.e5. doi: 10.1016/j.celrep.2020.01.089.

引用本文的文献

1
Dissecting the immune landscape in pediatric high-grade glioma reveals cell state changes under therapeutic pressure.
Cell Rep Med. 2025 May 20;6(5):102095. doi: 10.1016/j.xcrm.2025.102095. Epub 2025 May 1.
2
Gene regulatory networks analysis for the discovery of prognostic genes in gliomas.
Sci Rep. 2025 Apr 23;15(1):14034. doi: 10.1038/s41598-025-98542-7.
3
The Complexity of Malignant Glioma Treatment.
Cancers (Basel). 2025 Mar 4;17(5):879. doi: 10.3390/cancers17050879.
4
Invasion and metastasis in cancer: molecular insights and therapeutic targets.
Signal Transduct Target Ther. 2025 Feb 21;10(1):57. doi: 10.1038/s41392-025-02148-4.
5
Targeting Perineural Invasion in Pancreatic Cancer.
Cancers (Basel). 2024 Dec 21;16(24):4260. doi: 10.3390/cancers16244260.
6
Integrating priorities at the intersection of cancer and neuroscience.
Cancer Cell. 2025 Jan 13;43(1):1-5. doi: 10.1016/j.ccell.2024.09.014. Epub 2024 Oct 17.
7
Characterization of prevalent tyrosine kinase inhibitors and their challenges in glioblastoma treatment.
Front Chem. 2024 Jan 8;11:1325214. doi: 10.3389/fchem.2023.1325214. eCollection 2023.
8
An overview of human single-cell RNA sequencing studies in neurobiological disease.
Neurobiol Dis. 2023 Aug;184:106201. doi: 10.1016/j.nbd.2023.106201. Epub 2023 Jun 13.
9
The strange Microenvironment of Glioblastoma.
Rev Neurol (Paris). 2023 Jun;179(5):490-501. doi: 10.1016/j.neurol.2023.03.007. Epub 2023 Mar 22.
10
Brain Tumor Networks in Diffuse Glioma.
Neurotherapeutics. 2022 Oct;19(6):1832-1843. doi: 10.1007/s13311-022-01320-w. Epub 2022 Nov 10.

本文引用的文献

2
Olfactory sensory experience regulates gliomagenesis via neuronal IGF1.
Nature. 2022 Jun;606(7914):550-556. doi: 10.1038/s41586-022-04719-9. Epub 2022 May 11.
3
Neurotoxic reactive astrocytes induce cell death via saturated lipids.
Nature. 2021 Nov;599(7883):102-107. doi: 10.1038/s41586-021-03960-y. Epub 2021 Oct 6.
4
Neuroinflammatory astrocyte subtypes in the mouse brain.
Nat Neurosci. 2021 Oct;24(10):1475-1487. doi: 10.1038/s41593-021-00905-6. Epub 2021 Aug 19.
5
Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length.
J Neurosci. 2021 Sep 22;41(38):7954-7964. doi: 10.1523/JNEUROSCI.2463-20.2021. Epub 2021 Aug 2.
6
Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth.
Curr Biol. 2021 Sep 13;31(17):3743-3754.e5. doi: 10.1016/j.cub.2021.06.036. Epub 2021 Jul 15.
7
Microenvironmental interactions of oligodendroglial cells.
Dev Cell. 2021 Jul 12;56(13):1821-1832. doi: 10.1016/j.devcel.2021.06.006. Epub 2021 Jun 29.
8
NF1 mutation drives neuronal activity-dependent initiation of optic glioma.
Nature. 2021 Jun;594(7862):277-282. doi: 10.1038/s41586-021-03580-6. Epub 2021 May 26.
9
Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration.
Nat Commun. 2021 Apr 1;12(1):2030. doi: 10.1038/s41467-021-22301-1.
10
Multifaceted microglia - key players in primary brain tumour heterogeneity.
Nat Rev Neurol. 2021 Apr;17(4):243-259. doi: 10.1038/s41582-021-00463-2. Epub 2021 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验