Suppr超能文献

基于生物信息学分析和验证,GRSF1预测肺腺癌预后不良并促进肿瘤发生。

GRSF1 predicts an unfavorable prognosis and promotes tumorigenesis in lung adenocarcinoma based on bioinformatics analysis and validation.

作者信息

Huang Rong, Xu Lin, Chen Qichen, Tuersuntuoheti Amannisa, Su Luying, Xu Fu, Bi Yanqing, Deng Yiqiao, Song Wei, Zhao Hong, Che Xu

机构信息

Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Ann Transl Med. 2022 Jul;10(13):747. doi: 10.21037/atm-22-2798.

Abstract

BACKGROUND

Effective biomarkers play a critical role in improving clinical approaches to treat lung adenocarcinoma (LUAD). However, many existing biomarkers have limitations due to a lot of factors, requiring the development of additional biomarkers to effectively predict the disease course and prognosis of LUAD. Guanine-rich RNA sequence binding factor 1 (GRSF1) participates in multiple biological processes, but its regulatory effect on LUAD remains unknown. The present study aimed to investigate the clinicopathological importance and biological role of GRSF1 in LUAD.

METHODS

The expression of GRSF1 was evaluated using multiple service portals. X-Tile software were used to determine the high and low GRSF1 groups and the relationships between GRSF1 expression and clinicopathological characteristics were then analyzed by R packages. Besides, prognostic significance was identified by the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Kaplan-Meier (K-M) Plotter. Overall survival (OS) and disease-free survival (DFS) was the main outcome of prognosis analysis. The DNA copy number alterations (CNAs) and methylations were calculated using cBioPortal and R packages. The co-expressed genes of GRSF1 were obtained from LinkedOmics, and functional networks were then constructed by R clusterProfiler. Additionally, cell counting kit 8 (CCK-8) and colony formation assays were applied to verify the proliferation effects of GRSF1 on LUAD cells.

RESULTS

GRSF1 was significantly upregulated in the LUAD tissues compared to the non-tumor lung tissues (all P<0.05), and its expression was significantly correlated with gender (χ=6.873, P=0.009) and T classification (χ=13.62, P=0.003). Higher GRSF1 expression indicated worse OS [hazards ratio (HR) =1.6, P=0.0022] and DFS (HR =1.4, P=0.043), which suggested that GRSF1 was an independent prognostic factor for LUAD. DNA gain/amplification and hypomethylation may also contribute to GRSF1 upregulation. The functional annotation showed that GRSF1 regulates tumorigenesis through several signaling pathways. The knockdown of GRSF1 significantly suppressed lung cancer cell proliferation .

CONCLUSIONS

The high expression of GRSF1 indicated an unfavorable prognosis and was closely related to LUAD tumor occurrence and development, which could be used as an effective prognostic biomarker for patients suffering from LUAD.

摘要

背景

有效的生物标志物在改善肺腺癌(LUAD)的临床治疗方法中起着关键作用。然而,由于多种因素,许多现有生物标志物存在局限性,需要开发额外的生物标志物来有效预测LUAD的病程和预后。富含鸟嘌呤的RNA序列结合因子1(GRSF1)参与多种生物学过程,但其对LUAD的调节作用尚不清楚。本研究旨在探讨GRSF1在LUAD中的临床病理重要性和生物学作用。

方法

使用多个服务平台评估GRSF1的表达。使用X-Tile软件确定GRSF1高表达组和低表达组,然后通过R软件包分析GRSF1表达与临床病理特征之间的关系。此外,通过基因表达谱交互分析2(GEPIA2)和Kaplan-Meier(K-M)绘图工具确定预后意义。总生存期(OS)和无病生存期(DFS)是预后分析的主要结果。使用cBioPortal和R软件包计算DNA拷贝数改变(CNA)和甲基化。从LinkedOmics获得GRSF1的共表达基因,然后通过R软件包clusterProfiler构建功能网络。此外,应用细胞计数试剂盒8(CCK-8)和集落形成试验验证GRSF1对LUAD细胞的增殖作用。

结果

与非肿瘤肺组织相比,GRSF1在LUAD组织中显著上调(所有P<0.05),其表达与性别(χ=6.873,P=0.009)和T分期(χ=13.62,P=0.003)显著相关。较高的GRSF1表达表明OS较差[风险比(HR)=1.6,P=0.0022]和DFS较差(HR =1.4,P=0.043),这表明GRSF1是LUAD的独立预后因素。DNA增加/扩增和低甲基化也可能导致GRSF1上调。功能注释表明,GRSF1通过多种信号通路调节肿瘤发生。敲低GRSF1可显著抑制肺癌细胞增殖。

结论

GRSF1高表达提示预后不良,且与LUAD肿瘤发生发展密切相关,可作为LUAD患者有效的预后生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c16/9358520/3662052243b1/atm-10-13-747-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验