Lu Yaoyao, Happi Mbakam Cedric, Song Bo, Bendavid Eli, Tremblay Jacques-P
CHU de Québec Research Center, Laval University, Quebec City, QC, Canada.
Department of Molecular Medicine, Laval University, Quebec City, QC, Canada.
Front Genome Ed. 2022 Jul 26;4:892769. doi: 10.3389/fgeed.2022.892769. eCollection 2022.
Advancements in genome editing make possible to exploit the functions of enzymes for efficient DNA modifications with tremendous potential to treat human genetic diseases. Several nuclease genome editing strategies including Meganucleases (MNs), Zinc Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated proteins (CRISPR-Cas) have been developed for the correction of genetic mutations. CRISPR-Cas has further been engineered to create nickase genome editing tools including Base editors and Prime editors with much precision and efficacy. In this review, we summarized recent improvements in nuclease and nickase genome editing approaches for the treatment of genetic diseases. We also highlighted some limitations for the translation of these approaches into clinical applications.
基因组编辑技术的进步使得利用酶的功能进行高效的DNA修饰成为可能,这对于治疗人类遗传疾病具有巨大潜力。已经开发了几种核酸酶基因组编辑策略,包括归巢核酸内切酶(MNs)、锌指核酸酶(ZFNs)、转录激活样效应物核酸酶(TALENs)和成簇规律间隔短回文重复序列-CRISPR相关蛋白(CRISPR-Cas),用于纠正基因突变。CRISPR-Cas进一步被改造以创建切口酶基因组编辑工具,包括碱基编辑器和引导编辑器,具有更高的精度和效率。在这篇综述中,我们总结了核酸酶和切口酶基因组编辑方法在治疗遗传疾病方面的最新进展。我们还强调了将这些方法转化为临床应用的一些局限性。