Suppr超能文献

基于颞骨CT的深度学习模型用于原发性纤毛运动障碍相关中耳炎与单纯分泌性中耳炎的鉴别诊断。

Temporal bone CT-based deep learning models for differential diagnosis of primary ciliary dyskinesia related otitis media and simple otitis media with effusion.

作者信息

Duan Bo, Guo Zhuoyao, Pan Lili, Xu Zhengmin, Chen Wenxia

机构信息

Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University Shanghai 201102, China.

Department of Respirology, Children's Hospital of Fudan University Shanghai 201102, China.

出版信息

Am J Transl Res. 2022 Jul 15;14(7):4728-4735. eCollection 2022.

Abstract

OBJECTIVE

To investigate the diagnostic value of deep learning (DL) in differentiating otitis media (OM) caused by otitis media with effusion (OME) and primary ciliary dyskinesia (PCD), so as to provide reference for early intervention.

METHODS

From January 2010 to January 2021, 31 patients with PCD who had temporal bone computed tomography (TBCT) in the Children's Hospital of Fudan University were retrospectively analyzed. Another 30 age-matched cases of OME with TBCT were collected as the control group. The CT imaging signatures of children were observed. Besides, a variety of DL neural network training models were established based on PyTorch, and the optimal models were trained and selected for PCD screening.

RESULTS

The google net-trained model worked best, with an accuracy of 0.99. Vgg16_bn, vgg19_bn, resnet18, and resnet34; having neural networks with fewer layers, better model effects, with an accuracy rate of 0.86, 0.9, 0.86, and 0.86, respectively. Resnet50 and other neural networks with more layers had relatively poor results.

CONCLUSION

DL-based CT radiomics can accurately distinguish OM caused by OME from that induced by PCD, which can be used for screening the PCD.

摘要

目的

探讨深度学习(DL)在鉴别分泌性中耳炎(OME)和原发性纤毛运动障碍(PCD)所致中耳炎(OM)中的诊断价值,为早期干预提供参考。

方法

回顾性分析2010年1月至2021年1月在复旦大学附属儿科医院行颞骨计算机断层扫描(TBCT)的31例PCD患者。另收集30例年龄匹配的OME伴TBCT病例作为对照组。观察儿童的CT影像特征。此外,基于PyTorch建立多种DL神经网络训练模型,训练并筛选出用于PCD筛查的最优模型。

结果

谷歌网络训练的模型效果最佳,准确率为0.99。Vgg16_bn、vgg19_bn、resnet18和resnet34;层数较少的神经网络,模型效果较好,准确率分别为0.86、0.9、0.86和0.86。Resnet50等层数较多的神经网络结果相对较差。

结论

基于DL的CT影像组学能够准确区分OME所致OM和PCD所致OM,可用于PCD的筛查。

相似文献

2
Deep learning for the screening of primary ciliary dyskinesia based on cranial computed tomography.
Front Physiol. 2023 Mar 15;14:1098893. doi: 10.3389/fphys.2023.1098893. eCollection 2023.
3
No evidence of cholesteatoma in untreated otitis media with effusion in children with primary ciliary dyskinesia.
Int J Pediatr Otorhinolaryngol. 2018 Feb;105:176-180. doi: 10.1016/j.ijporl.2017.12.015. Epub 2017 Dec 14.
5
Prediction of Hearing Prognosis of Large Vestibular Aqueduct Syndrome Based on the PyTorch Deep Learning Model.
J Healthc Eng. 2022 Apr 13;2022:4814577. doi: 10.1155/2022/4814577. eCollection 2022.
6
Gene mutations in primary ciliary dyskinesia related to otitis media.
Curr Allergy Asthma Rep. 2014 Mar;14(3):420. doi: 10.1007/s11882-014-0420-1.
7
Management of otitis media with effusion in children with primary ciliary dyskinesia: a literature review.
Int J Pediatr Otorhinolaryngol. 2009 Dec;73(12):1630-8. doi: 10.1016/j.ijporl.2009.08.024. Epub 2009 Sep 30.
8
9
Quantification of Mastoid Air Cells and Opacification of the Middle Ear in Primary Ciliary Dyskinesia.
Otol Neurotol. 2024 Feb 1;45(2):e102-e106. doi: 10.1097/MAO.0000000000004059. Epub 2023 Nov 16.
10
Middle ear ventilation in children with primary ciliary dyskinesia.
Int J Pediatr Otorhinolaryngol. 2012 Nov;76(11):1565-8. doi: 10.1016/j.ijporl.2012.07.011. Epub 2012 Aug 9.

本文引用的文献

1
Tympanic membrane perforations: a critical analysis of 1003 ears and proposal of a new classification based on pathogenesis.
Eur Arch Otorhinolaryngol. 2022 Mar;279(3):1277-1283. doi: 10.1007/s00405-021-06776-8. Epub 2021 Mar 27.
2
Machine learning applications in prostate cancer magnetic resonance imaging.
Eur Radiol Exp. 2019 Aug 7;3(1):35. doi: 10.1186/s41747-019-0109-2.
3
Diagnosis of Primary Ciliary Dyskinesia. An Official American Thoracic Society Clinical Practice Guideline.
Am J Respir Crit Care Med. 2018 Jun 15;197(12):e24-e39. doi: 10.1164/rccm.201805-0819ST.
4
Analysis of Otologic Features of Patients With Primary Ciliary Dyskinesia.
Otol Neurotol. 2017 Dec;38(10):e451-e456. doi: 10.1097/MAO.0000000000001599.
5
Radiomics: the bridge between medical imaging and personalized medicine.
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762. doi: 10.1038/nrclinonc.2017.141. Epub 2017 Oct 4.
6
Clinical practice guidelines for the diagnosis and management of otitis media with effusion (OME) in children in Japan, 2015.
Auris Nasus Larynx. 2017 Oct;44(5):501-508. doi: 10.1016/j.anl.2017.03.018. Epub 2017 May 1.
7
Cilia and Ear.
Ann Otol Rhinol Laryngol. 2017 Apr;126(4):322-327. doi: 10.1177/0003489417691299. Epub 2017 Feb 12.
8
European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia.
Eur Respir J. 2017 Jan 4;49(1). doi: 10.1183/13993003.01090-2016. Print 2017 Jan.
9
A longitudinal evaluation of hearing and ventilation tube insertion in patients with primary ciliary dyskinesia.
Int J Pediatr Otorhinolaryngol. 2016 Oct;89:164-8. doi: 10.1016/j.ijporl.2016.08.011. Epub 2016 Aug 18.
10
Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents.
Ann Am Thorac Soc. 2016 Aug;13(8):1305-13. doi: 10.1513/AnnalsATS.201511-748OC.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验