Suppr超能文献

基于 PyTorch 深度学习模型预测大前庭水管综合征的听力预后。

Prediction of Hearing Prognosis of Large Vestibular Aqueduct Syndrome Based on the PyTorch Deep Learning Model.

机构信息

Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai 201102, China.

Department of Radiology, Children's Hospital of Fudan University, Shanghai 201102, China.

出版信息

J Healthc Eng. 2022 Apr 13;2022:4814577. doi: 10.1155/2022/4814577. eCollection 2022.

Abstract

In order to compare magnetic resonance imaging (MRI) findings of patients with large vestibular aqueduct syndrome (LVAS) in the stable hearing loss (HL) group and the fluctuating HL group, this paper provides reference for clinicians' early intervention. From January 2001 to January 2016, patients with hearing impairment diagnosed as LVAS in infancy in the Department of Otorhinolaryngology, Head and Neck Surgery, Children's Hospital of Fudan University were collected and divided into the stable HL group ( = 29) and the fluctuating HL group ( = 30). MRI images at initial diagnosis were collected, and various deep learning neural network training models were established based on PyTorch to classify and predict the two series. Vgg16_bn, vgg19_bn, and ResNet18, convolutional neural networks (CNNs) with fewer layers, had favorable effects for model building, with accs of 0.9, 0.8, and 0.85, respectively. ResNet50, a CNN with multiple layers and an acc of 0.54, had relatively poor effects. The GoogLeNet-trained model performed best, with an acc of 0.98. We conclude that deep learning-based radiomics can assist doctors in accurately predicting LVAS patients to classify them into either fluctuating or stable HL types and adopt differentiated treatment methods.

摘要

为了比较大前庭水管综合征(LVAS)患者在稳定听力损失(HL)组和波动 HL 组的磁共振成像(MRI)表现,为临床医生的早期干预提供参考。本文收集了复旦大学附属儿科医院耳鼻喉头颈外科 2001 年 1 月至 2016 年 1 月诊断为婴儿期听力损失的 LVAS 患者,分为稳定 HL 组(n=29)和波动 HL 组(n=30)。收集了初始诊断时的 MRI 图像,并基于 PyTorch 为这两个系列建立了各种深度学习神经网络训练模型进行分类和预测。层数较少的卷积神经网络(CNN)Vgg16_bn、vgg19_bn 和 ResNet18 的效果较好,其 acc 分别为 0.9、0.8 和 0.85。层数较多的 ResNet50 的效果相对较差,acc 为 0.54。GoogLeNet 训练的模型效果最佳,acc 为 0.98。我们得出结论,基于深度学习的放射组学可以帮助医生准确预测 LVAS 患者,将其分为波动或稳定 HL 类型,并采用不同的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e21d/9020928/1a6d28a77b5e/JHE2022-4814577.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验