Suppr超能文献

全基因组初步筛查发现印度人群中与冠状动脉疾病相关的新变异。

Preliminary genome wide screening identifies new variants associated with coronary artery disease in Indian population.

作者信息

Bhat Keshavamurthy Ganapathy, Guleria Vivek Singh, J Ratheesh Kumar, Rastogi Garima, Sharma Varun, Sharma Anuka

机构信息

Department of Cardiology, Army Hospital (R&R) New Delhi-110010, India.

NMC Genetics India Pvt. Ltd. Gurugram 122001, Haryana, India.

出版信息

Am J Transl Res. 2022 Jul 15;14(7):5124-5131. eCollection 2022.

Abstract

AIM

Coronary artery disease (CAD) is a major health problem in developed and developing nations. Development of CAD involves a complex interaction between genetics and lifestyle factors. Individuals with high-risk genetic predisposition along with poor lifestyle are more inclined to the development of CAD. Advancement in genotyping technologies and increase in genome wide studies has provided a platform to identify new risk factors associated with CAD and associated complexities.

METHODOLOGY

In this study we performed genome wide screening in 76 well-defined CAD cases and 77 control samples in Indian population. Interestingly, new variants are identified in three genes , VLDLR, IFITM2 and C2CD4C.

RESULTS

The odds ratios observed for variant rs1869592 (), rs1059091 () and rs7247159 () were 2.6 (1.4-4.8 95% CI), 1.9 (95% CI 1.2-3.1) and 2.1 (1.2-3.7 95% CI), respectively with significant value <0.01. These variants that are associated with pathogenesis of CAD were not previously reported in literature. Moreover, we anticipate that these variants will be further validated using a larger sample size.

摘要

目的

冠状动脉疾病(CAD)在发达国家和发展中国家都是一个主要的健康问题。CAD的发展涉及遗传因素和生活方式因素之间的复杂相互作用。具有高风险遗传易感性且生活方式不良的个体更易患CAD。基因分型技术的进步和全基因组研究的增加为识别与CAD及其相关复杂性相关的新风险因素提供了一个平台。

方法

在本研究中,我们对印度人群中的76例明确诊断的CAD病例和77例对照样本进行了全基因组筛查。有趣的是,在三个基因VLDLR、IFITM2和C2CD4C中发现了新的变异。

结果

观察到变异rs1869592()、rs1059091()和rs7247159()的优势比分别为2.6(1.4 - 4.8,95%置信区间)、1.9(95%置信区间1.2 - 3.1)和2.1(1.2 - 3.7,95%置信区间),显著p值<0.01。这些与CAD发病机制相关的变异此前在文献中未被报道。此外,我们预计这些变异将使用更大的样本量进一步验证。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验