Suppr超能文献

具有非厄米畴壁的光子拓扑绝缘体的有效哈密顿量

Effective Hamiltonian for Photonic Topological Insulator with Non-Hermitian Domain Walls.

作者信息

Li Yandong, Fan Chongxiao, Hu Xiaoyong, Ao Yutian, Lu Cuicui, Chan C T, Kennes Dante M, Gong Qihuang

机构信息

State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, People's Republic of China.

Institute for Theory of Statistical Physics, RWTH Aachen University, and JARA Fundamentals of Future Information Technology, 52062 Aachen, Germany.

出版信息

Phys Rev Lett. 2022 Jul 29;129(5):053903. doi: 10.1103/PhysRevLett.129.053903.

Abstract

The gain and loss in photonic lattices provide possibilities for many functional phenomena. In this Letter, we consider photonic topological insulators with different types of gain-loss domain walls, which will break the translational symmetry of the lattices. A method is proposed to construct effective Hamiltonians, which accurately describe states and the corresponding energies at the domain walls for different types of photonic topological insulators and domain walls with arbitrary shapes. We also consider domain-induced higher-order topological states in two-dimensional non-Hermitian Aubry-André-Harper lattices and use our method to explain such phenomena successfully. Our results reveal the physics in photonic topological insulators with gain-loss domain walls, which provides advanced pathways for manipulation of non-Hermitian topological states in photonic systems.

摘要

光子晶格中的增益和损耗为许多功能现象提供了可能性。在本信函中,我们考虑具有不同类型增益 - 损耗畴壁的光子拓扑绝缘体,这将打破晶格的平移对称性。我们提出了一种构建有效哈密顿量的方法,该方法能准确描述不同类型光子拓扑绝缘体以及任意形状畴壁处的状态和相应能量。我们还考虑了二维非厄米 Aubry - André - Harper 晶格中畴诱导的高阶拓扑态,并成功地用我们的方法解释了此类现象。我们的结果揭示了具有增益 - 损耗畴壁的光子拓扑绝缘体中的物理原理,为光子系统中非厄米拓扑态的操控提供了先进途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验