Pérez Gabriel O'Ryan, Dueñas Joaquín Medina, Guzmán-Silva Diego, Torres Luis E F Foa, Hermann-Avigliano Carla
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
Millenium Institute for Research in Optics (MIRO), Santiago, Chile.
Sci Rep. 2024 May 30;14(1):12435. doi: 10.1038/s41598-024-63321-3.
Advancements in photonics technologies have significantly enhanced their capability to facilitate experiments involving quantum light, even at room temperature. Nevertheless, fully integrating photonic chips that include quantum light sources, effective manipulation and transport of light minimizing losses, and appropriate detection systems remains an ongoing challenge. Topological photonic systems have emerged as promising platforms to protect quantum light properties during propagation, beyond merely preserving light intensity. In this work, we delve into the dynamics of non-classical light traversing a Su-Schrieffer-Heeger photonic lattice with topological domain walls. Our focus centers on how topology influences the quantum properties of light as it moves across the array. By precisely adjusting the spacing between waveguides, we achieve dynamic repositioning and interaction of domain walls, facilitating effective beam-splitting operations. Our findings demonstrate high-fidelity transport of non-classical light across the lattice, replicating known results that are now safeguarded by the topology of the system. This protection is especially beneficial for quantum communication protocols with continuous variable states. Our study enhances the understanding of light dynamics in topological photonic systems and paves the way for high-fidelity, topology-protected quantum communication.
光子技术的进步显著增强了其在促进涉及量子光的实验方面的能力,即使在室温下也是如此。然而,将包括量子光源、有效控制和传输光以最小化损耗以及合适的检测系统的光子芯片进行完全集成,仍然是一个持续存在的挑战。拓扑光子系统已成为有前景的平台,不仅能在传播过程中保持光强,还能保护量子光的特性。在这项工作中,我们深入研究了非经典光穿过具有拓扑畴壁的Su-Schrieffer-Heeger光子晶格的动力学。我们关注的重点是拓扑结构如何在光穿过阵列时影响其量子特性。通过精确调整波导之间的间距,我们实现了畴壁的动态重新定位和相互作用,从而促进了有效的分束操作。我们的研究结果表明,非经典光在晶格中实现了高保真传输,重现了现在由系统拓扑结构保护的已知结果。这种保护对于具有连续可变状态的量子通信协议特别有益。我们的研究增进了对拓扑光子系统中光动力学的理解,并为高保真、拓扑保护的量子通信铺平了道路。