Magrini Lorenzo, Camarena-Chávez Victor A, Bach Constanze, Johnson Aisling, Aspelmeyer Markus
University of Vienna, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), 1090 Vienna, Austria.
Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, 1090 Vienna, Austria.
Phys Rev Lett. 2022 Jul 29;129(5):053601. doi: 10.1103/PhysRevLett.129.053601.
Quantum measurements of mechanical systems can generate optical squeezing via ponderomotive forces. Its observation requires high environmental isolation and efficient detection, typically achieved by using cryogenic cooling and optical cavities. Here, we realize these conditions by measuring the position of an optically levitated nanoparticle at room temperature and without the overhead of an optical cavity. We use a fast heterodyne detection to reconstruct simultaneously orthogonal optical quadratures, and observe a noise reduction of 9%±0.5% below shot noise. Our experiment offers a novel, cavityless platform for squeezed-light enhanced sensing. At the same time it delineates a clear and simple strategy toward observation of stationary optomechanical entanglement.
机械系统的量子测量可以通过光压产生光学压缩。对其进行观测需要高度的环境隔离和高效的探测,通常通过低温冷却和光学腔来实现。在此,我们在室温下且无需光学腔的情况下,通过测量光悬浮纳米颗粒的位置实现了这些条件。我们使用快速外差探测同时重建正交光学象限,并观察到噪声比散粒噪声降低了9%±0.5%。我们的实验为压缩光增强传感提供了一个新颖的无腔平台。同时,它为观测静态光机械纠缠描绘了一个清晰简单的策略。