Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Center for Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Nature. 2024 Feb;626(7999):512-516. doi: 10.1038/s41586-023-06997-3. Epub 2024 Feb 14.
At room temperature, mechanical motion driven by the quantum backaction of light has been observed only in pioneering experiments in which an optical restoring force controls the oscillator stiffness. For solid-state mechanical resonators in which oscillations are controlled by the material rigidity, the observation of these effects has been hindered by low mechanical quality factors, optical cavity frequency fluctuations, thermal intermodulation noise and photothermal instabilities. Here we overcome these challenges with a phononic-engineered membrane-in-the-middle system. By using phononic-crystal-patterned cavity mirrors, we reduce the cavity frequency noise by more than 700-fold. In this ultralow noise cavity, we insert a membrane resonator with high thermal conductance and a quality factor (Q) of 180 million, engineered using recently developed soft-clamping techniques. These advances enable the operation of the system within a factor of 2.5 of the Heisenberg limit for displacement sensing, leading to the squeezing of the probe laser by 1.09(1) dB below the vacuum fluctuations. Moreover, the long thermal decoherence time of the membrane oscillator (30 vibrational periods) enables us to prepare conditional displaced thermal states of motion with an occupation of 0.97(2) phonons using a multimode Kalman filter. Our work extends the quantum control of solid-state macroscopic oscillators to room temperature.
在室温下,仅在开创性实验中观察到了由光的量子反作用驱动的机械运动,其中光学恢复力控制振荡器的刚度。对于通过材料刚度控制振动的固态机械谐振器,这些效应的观察受到低机械品质因数、光学腔频率波动、热互调噪声和光热不稳定性的阻碍。在这里,我们通过中间膜的声子工程系统克服了这些挑战。通过使用声子晶体图案化的腔镜,我们将腔的频率噪声降低了 700 多倍。在这个超低噪声腔中,我们插入了一个具有高热导和 1.8 亿品质因数(Q)的膜谐振器,这是使用最近开发的软夹技术设计的。这些进展使系统能够在位移传感的海森堡极限内工作,从而使探针激光的压缩达到真空波动的 1.09(1)分贝以下。此外,膜振荡器的长热退相干时间(30 个振动周期)使我们能够使用多模卡尔曼滤波器以 0.97(2)声子的占据制备条件位移热运动态。我们的工作将固态宏观振荡器的量子控制扩展到了室温。