Institute of Science and Technology Austria, Klosterneuburg, Austria.
Nature. 2019 Jun;570(7762):480-483. doi: 10.1038/s41586-019-1320-2. Epub 2019 Jun 26.
Mechanical systems facilitate the development of a hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom, and entanglement is essential to realize quantum-enabled devices. Continuous-variable entangled fields-known as Einstein-Podolsky-Rosen (EPR) states-are spatially separated two-mode squeezed states that can be used for quantum teleportation and quantum communication. In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers, and at microwave frequencies Josephson circuits can serve as a nonlinear medium. An outstanding goal is to deterministically generate and distribute entangled states with a mechanical oscillator, which requires a carefully arranged balance between excitation, cooling and dissipation in an ultralow noise environment. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30-micrometre-long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40 decibels below the vacuum level. The motion of this micromechanical system correlates up to 50 photons per second per hertz, giving rise to a quantum discord that is robust with respect to microwave noise. Such generalized quantum correlations of separable states are important for quantum-enhanced detection and provide direct evidence of the non-classical nature of the mechanical oscillator without directly measuring its state. This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects, with potential implications for sensing, open-system dynamics and fundamental tests of quantum gravity. In the future, similar on-chip devices could be used to entangle subsystems on very different energy scales, such as microwave and optical photons.
机械系统促进了包含电、光、原子和声学自由度的混合量子技术的发展,而纠缠对于实现量子技术设备至关重要。连续变量纠缠场,称为爱因斯坦-波多尔斯基-罗森(Einstein-Podolsky-Rosen,EPR)态,是空间分离的双模压缩态,可以用于量子隐形传态和量子通信。在光学领域,EPR 态通常使用非简并光学放大器产生,而在微波频率下,约瑟夫森电路可以作为非线性介质。一个卓越的目标是使用机械振荡器确定性地生成和分配纠缠态,这需要在超低噪声环境中仔细平衡激励、冷却和耗散。在这里,我们观察到来自参数驱动的 30 微米长硅纳米线振荡器的路径纠缠微波辐射的稳定发射,通过将两个热模的联合场算子压缩到真空水平以下 3.40 分贝。这个微机械系统的运动每秒每赫兹关联多达 50 个光子,导致量子失协对微波噪声具有鲁棒性。这种可分离态的广义量子相关性对于量子增强检测很重要,并提供了机械振荡器非经典性质的直接证据,而无需直接测量其状态。这种非侵入式测量方案允许推断关于其他无法访问的物体的信息,对于传感、开放系统动力学和量子引力的基本测试具有潜在影响。在未来,类似的片上设备可以用于纠缠非常不同能量尺度的子系统,例如微波和光学光子。