Suppr超能文献

超表面微纳光学传感器:原理与应用

Metasurface Micro/Nano-Optical Sensors: Principles and Applications.

作者信息

Qin Jin, Jiang Shibin, Wang Zhanshan, Cheng Xinbin, Li Baojun, Shi Yuzhi, Tsai Din Ping, Liu Ai Qun, Huang Wei, Zhu Weiming

机构信息

School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.

出版信息

ACS Nano. 2022 Aug 23;16(8):11598-11618. doi: 10.1021/acsnano.2c03310. Epub 2022 Aug 12.

Abstract

Metasurfaces are 2D artificial materials consisting of arrays of metamolecules, which are exquisitely designed to manipulate light in terms of amplitude, phase, and polarization state with spatial resolutions at the subwavelength scale. Traditional micro/nano-optical sensors (MNOSs) pursue high sensitivity through strongly localized optical fields based on diffractive and refractive optics, microcavities, and interferometers. Although detections of ultra-low concentrations of analytes have already been demonstrated, the label-free sensing and recognition of complex and unknown samples remain challenging, requiring multiple readouts from sensors, ., refractive index, absorption/emission spectrum, chirality, . Additionally, the reliability of detecting large, inhomogeneous biosamples may be compromised by the limited near-field sensing area from the localization of light. Here, we review recent advances in metasurface-based MNOSs and compare them with counterparts using micro-optics from aspects of physics, working principles, and applications. By virtue of underlying the physics and design flexibilities of metasurfaces, MNOSs have now been endowed with superb performances and advanced functionalities, leading toward highly integrated smart sensing platforms.

摘要

超表面是由超分子阵列组成的二维人工材料,这些超分子经过精心设计,能够在亚波长尺度上以空间分辨率对光的幅度、相位和偏振态进行操控。传统的微纳光学传感器(MNOS)基于衍射和折射光学、微腔和干涉仪,通过强局域光场来追求高灵敏度。尽管已经证明能够检测超低浓度的分析物,但对复杂和未知样品进行无标记传感和识别仍然具有挑战性,这需要从传感器进行多种读数,例如折射率、吸收/发射光谱、手性等。此外,检测大型、不均匀生物样品的可靠性可能会因光局域产生的有限近场传感区域而受到影响。在这里,我们回顾基于超表面的MNOS的最新进展,并从物理、工作原理和应用等方面将它们与使用微光学的同类产品进行比较。凭借超表面的物理特性和设计灵活性,MNOS现在已经具备了卓越的性能和先进的功能,朝着高度集成的智能传感平台发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验