Suppr超能文献

基于底部组装的光子晶体用于结构增强的无标记传感。

Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing.

机构信息

BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands.

Complex Photonic Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands.

出版信息

ACS Nano. 2021 Jun 22;15(6):9299-9327. doi: 10.1021/acsnano.1c02495. Epub 2021 May 24.

Abstract

Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.

摘要

光子晶体(PhC)显示出光子带隙(PSB),在这些 PSB 的边缘,光的传输速度降低,从而使 PhC 能够限制和操纵具有增强的光物质相互作用的入射光。人们致力于利用 PhC 的光学特性来开发用于生物分析、诊断和环境监测的光学传感器。这些应用还得益于 PhC 的固有大表面积,从而实现了高分析物吸附和 PhC 结构变化的广泛选择,从而增强了光物质相互作用。在这里,我们专注于自下而上组装的 PhC,并回顾了在将其用作无标记传感器方面取得的重大进展。我们描述了它们在即时护理设备中的潜力,并在综述中包括了它们的结构设计、组成材料、制造策略和传感工作原理。因此,我们根据五种传感原理对它们进行了分类:折射率变化的传感、晶格间距变化的传感、增强荧光光谱学、表面增强拉曼光谱学和构型转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2479/8291770/e5dfe4e29614/nn1c02495_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验