文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

边缘人工智能无线视频胶囊内窥镜。

Edge artificial intelligence wireless video capsule endoscopy.

机构信息

Applied AI and Data Science (AID), Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.

Biomedical Laboratory, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.

出版信息

Sci Rep. 2022 Aug 12;12(1):13723. doi: 10.1038/s41598-022-17502-7.


DOI:10.1038/s41598-022-17502-7
PMID:35962014
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9374669/
Abstract

Gastrointestinal (GI) tract diseases are responsible for substantial morbidity and mortality worldwide, including colorectal cancer, which has shown a rising incidence among adults younger than 50. Although this could be alleviated by regular screening, only a small percentage of those at risk are screened comprehensively, due to shortcomings in accuracy and patient acceptance. To address these challenges, we designed an artificial intelligence (AI)-empowered wireless video endoscopic capsule that surpasses the performance of the existing solutions by featuring, among others: (1) real-time image processing using onboard deep neural networks (DNN), (2) enhanced visualization of the mucous layer by deploying both white-light and narrow-band imaging, (3) on-the-go task modification and DNN update using over-the-air-programming and (4) bi-directional communication with patient's personal electronic devices to report important findings. We tested our solution in an in vivo setting, by administrating our endoscopic capsule to a pig under general anesthesia. All novel features, successfully implemented on a single platform, were validated. Our study lays the groundwork for clinically implementing a new generation of endoscopic capsules, which will significantly improve early diagnosis of upper and lower GI tract diseases.

摘要

胃肠道(GI)疾病在全球范围内导致了大量的发病率和死亡率,包括结直肠癌,其在 50 岁以下成年人中的发病率呈上升趋势。尽管定期筛查可以缓解这种情况,但由于准确性和患者接受度的不足,只有一小部分高危人群接受了全面筛查。为了解决这些挑战,我们设计了一种人工智能(AI)赋能的无线视频内窥镜胶囊,通过以下功能超越了现有解决方案的性能:(1)使用板载深度神经网络(DNN)进行实时图像处理,(2)通过部署白光和窄带成像增强黏液层的可视化,(3)使用空中编程进行实时任务修改和 DNN 更新,(4)与患者个人电子设备进行双向通信以报告重要发现。我们在体内环境中对我们的内窥镜胶囊进行了测试,在全麻下将其施用于一头猪。所有新功能都在单个平台上成功实现并得到验证。我们的研究为临床实施新一代内窥镜胶囊奠定了基础,这将显著提高上消化道和下消化道疾病的早期诊断水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/90cac2a51112/41598_2022_17502_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/cda5b7b3067c/41598_2022_17502_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/6c67ba08447a/41598_2022_17502_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/25096422f33c/41598_2022_17502_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/5e318bcbd44e/41598_2022_17502_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/051c57b7bbbd/41598_2022_17502_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/90cac2a51112/41598_2022_17502_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/cda5b7b3067c/41598_2022_17502_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/6c67ba08447a/41598_2022_17502_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/25096422f33c/41598_2022_17502_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/5e318bcbd44e/41598_2022_17502_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/051c57b7bbbd/41598_2022_17502_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0609/9374669/90cac2a51112/41598_2022_17502_Fig6_HTML.jpg

相似文献

[1]
Edge artificial intelligence wireless video capsule endoscopy.

Sci Rep. 2022-8-12

[2]
Artificial intelligence in gastrointestinal endoscopy.

VideoGIE. 2020-11-9

[3]
Study of capsule endoscopy delivery at scale through enhanced artificial intelligence-enabled analysis (the CESCAIL study).

Colorectal Dis. 2023-7

[4]
Application of artificial intelligence in gastrointestinal endoscopy.

Arab J Gastroenterol. 2024-5

[5]
Generic feature learning for wireless capsule endoscopy analysis.

Comput Biol Med. 2016-10-19

[6]
Artificial Intelligence Research and Development for Application in Video Capsule Endoscopy.

Gastrointest Endosc Clin N Am. 2021-4

[7]
Quantitative measurements in capsule endoscopy.

Comput Biol Med. 2015-10-1

[8]
A video-based speed estimation technique for localizing the wireless capsule endoscope inside gastrointestinal tract.

Annu Int Conf IEEE Eng Med Biol Soc. 2014

[9]
A modular and programmable development platform for capsule endoscopy system.

J Med Syst. 2014-6

[10]
Image Aided Recognition of Wireless Capsule Endoscope Based on the Neural Network.

J Healthc Eng. 2022-4-7

引用本文的文献

[1]
Deep Learning for Comprehensive Analysis of Retinal Fundus Images: Detection of Systemic and Ocular Conditions.

Bioengineering (Basel). 2025-8-3

[2]
eNCApsulate: neural cellular automata for precision diagnosis on capsule endoscopes.

Int J Comput Assist Radiol Surg. 2025-7-4

[3]
Integration of Artificial Intelligence-Enhanced Capsule Endoscopy in Clinical Practice: A Review of Market-Available Tools for Clinical Practice.

Dig Dis Sci. 2025-6-9

[4]
Precision enhancement in wireless capsule endoscopy: a novel transformer-based approach for real-time video object detection.

Front Artif Intell. 2025-4-30

[5]
Towards full integration of explainable artificial intelligence in colon capsule endoscopy's pathway.

Sci Rep. 2025-2-18

[6]
Spectrum aided vision enhancer enhances mucosal visualization by hyperspectral imaging in capsule endoscopy.

Sci Rep. 2024-9-27

[7]
Polypoid Lesion Segmentation Using YOLO-V8 Network in Wireless Video Capsule Endoscopy Images.

Diagnostics (Basel). 2024-2-22

[8]
Miniaturized Capsule System Toward Real-Time Electrochemical Detection of H S in the Gastrointestinal Tract.

Adv Healthc Mater. 2024-2

[9]
Assessment of Narrow Band Imaging Algorithm for Video Capsule Endoscopy Based on Decorrelated Color Space for Esophageal Cancer.

Cancers (Basel). 2023-9-25

[10]
AID-U-Net: An Innovative Deep Convolutional Architecture for Semantic Segmentation of Biomedical Images.

Diagnostics (Basel). 2022-11-25

本文引用的文献

[1]
PEACE: Perception and Expectations toward Artificial Intelligence in Capsule Endoscopy.

J Clin Med. 2021-12-6

[2]
A deep learning framework for autonomous detection and classification of Crohn's disease lesions in the small bowel and colon with capsule endoscopy.

Endosc Int Open. 2021-8-16

[3]
Feature Point Tracking-Based Localization of Colon Capsule Endoscope.

Diagnostics (Basel). 2021-1-28

[4]
Colon Capsule Endoscopy vs. CT Colonography Following Incomplete Colonoscopy: A Systematic Review with Meta-Analysis.

Cancers (Basel). 2020-11-13

[5]
Capsule endoscopy - Recent developments and future directions.

Expert Rev Gastroenterol Hepatol. 2021-2

[6]
Colon capsule endoscopy versus CT colonography in FIT-positive colorectal cancer screening subjects: a prospective randomised trial-the VICOCA study.

BMC Med. 2020-9-18

[7]
A Fluorescence-Based Wireless Capsule Endoscopy System for Detecting Colorectal Cancer.

Cancers (Basel). 2020-4-6

[8]
Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning.

Acta Oncol. 2019-3-5

[9]
Screening individuals' experiences of colonoscopy and colon capsule endoscopy; a mixed methods study.

Acta Oncol. 2019-3-1

[10]
Capsule endoscopy vs. colonoscopy vs. histopathology in colorectal cancer screening: matched analyses of polyp size, morphology, and location estimates.

Int J Colorectal Dis. 2018-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索